Thay cac dai lupng d (2.16) vao (2.15) ta co:
= A e -il* * -* ') (2.17)
Nhu vay ham song (2.17) dupe dac trung bdi nang lupng hat E va vecto xung lupng P cua hat, vecto P co ba thanh phdn Px,Py,Pz va lien he vdi vecto song K biiig (2.16).
Ham song (2.15) la mpt ham song phing vi mat song, noi ma song cd pha nhu nhau, la mpt mat phang vuong goc vdi phuong truyen song nhu bieu diin tren hinh (2.6). That v£y, tai mot thdi diem t cho trudc cac die’m co pha p bang nhau phai n im tren mat phing vuong goc vdi K, vi tren mat phing do t&t ca cac diem deu thoa man K f= const, nen = (u>t — Kr) = const.
2.2. Cac tinh chat cua song De Broglie 53
Hinh 2.6: Mat song cua ham song phang.
Ham song (2.15) la mpt ham don sic bdi v! no dupe dac trung bdi mfit tin so v - £ = j- n h lt dinh.
Song De Broglie dupe goi la song vat chit, no cung lan truyen giao thoa, nh iiu xa... nhu mot song phing. Bay gid chung ta se khao sat mot so nhung tinh ch it dac trung cua song De Broglie.
2.2.2 Y nghia xac suat cua song De Broglie. V ln de dat ra bay gid la tim hieu de biet dieu gi se xay ra khi mot dang vat ch it (nhu dien tir chang han) lai bieu hien cac tinh ch it song. Noi cach khac ta phai tim hieu y nghia cua ham song De Broglie.
1. Y nghia xac suat cua buc xa dien tic. Gia sir co anh giao thoa qua hai khe n im sat nhau cua anh sang (buc xa dien tir). Theo quan diem song, thi cudng do sang I la nang lupng tren mot don vi dien tfch, mpt don vi thdi gian tai mot diem tren man hinh co dang:
I = e0c£2, (2.18)
trong do £ la cudng do dien trudng tai diem do, e0 la hlng so dien, c van tdc anh sang.
Mat khac theo quan diem hat thi cudng do blng:
I = h v N (2.19)
rong do hv la nang lupng mpt photon va N la thong lupng photon (so photon :ren mot don vi dien tfch, mot don vi thdi gian) tdi diem do.
54 Chucmg 2. Mot so van de vat ly luong tu
Ta khong co cach nao de doan trudc noi ma mpt photon cho trudc se roi vao de sinh ra mot chdp sang. Nhung neu ta xet anh giao thoa gom cac van sang v^n toi xen ke nhau thi moi photon se co xac suSt ldn de rcri vao cho van sang va co xac suat bang khong de roi vao cho van toi. Nhu vay ta co the noi ring thong luong photon tdi moi diem tren man hinh cho ta so do xac suat de tim dupe mot photon d lan can diem do.
Vi I = e0c£2 = hvN nen ta suy ra N ~ £2. Theo quan diem lupng tir thi dai lupng dao dong (d day la dien trudng) phai la mot ham ma binh phuong cua no cho ta xac suat tim thay photon tai mot diem cho trudc.
2. Y nghTa xac suat cua song vat chat. Anh giao thoa anh sang noi tren cung co the la anh giao thoa cua cac song vat chat. Khi do, y nghTa xac suat d.’/a tren luong tfnh song-hat cua anh sang dupe md rong cho ludng tfnh song hat cua vat chat. Thanh thir song ket hop vdi dien tir cho phep giai thfch dung anh nhidu xa dien tir, thi cung chfnh song do dupe bieu d iln bdi ham song ma gia tri tuyet ddi binh phuong |^ |2 cho ta xac suat tim th iy m ot dien tir tai mot diem cho trudc. Muon ket hop cac cach bieu diln song va hat, ta phai tir bo y nghi cho rang mPi hat cho trudc phai dupe dinh xir ro rang phai co quy dao xac dinh, ta chi dupe phep noi ve xac suat tim hat tai mot diem xac dinh d mot thdi diem da cho.
Thong thudng ta ky hieu ham song De Broglie, ham song vat chat, bang d(huj) dE p
? 3 d K d(hK) dp dp m
2.3 Nguyen ly bat dinh Heisenberg
2.3.1 He thurc bat dinh ve toa do va xung lupng cua hat. Gia su ta muon xac dinh chfnh xac vi trf cua mpt doi tupng vat cha't nhu dien tu chang han, thi ta phai thuc hien mot thi nghiem nao do: vf du ta co the dat mot khe tren lo trinh cua hat chuyen dong theo phuong y, nghTa la vdi xung lupng P = Pv va vdi nang lupng cho trudc nhu d hinh (2.8). Neu hat de lai mot dau vet tren man chan dat sau khe thi ta biet chac hat da qua khe. Khi do ta xac dinh dupe vi trf cua hat tren true x vdi sai so bang do rong d cua khe. Noi each khac ta
da xac dinh vi tri cua hat tai thdi diem (va ca trudc thdi diem) hat qua khe vdi do bat dinh Ax = d. Khe cang hep, do bat dinh Ax cang nho va vi tri cua hat theo true xdupc xac dinh cang chfnh xac.
2.3. Nguyen ly bat dinh Heisenberg 59
Do ban chat cua vat chat, ta biet ro hat se bi nhilu xa khi di qua khe. Ta khong the doan trudc hat se rcri vao chP nao tren man chin, nhung sau khi hat da roi vao mpt diem nao do tren man chin thi ta biet chdc hat da qua khe va co su thay doi cua xung lupng cua hat.
Hien tupng nhilu xa da tac dong den xung lupng cua hat. Khi hat chua qua khe ta hoan toan khong biet vi tri cua no nhung lai biet xung lupng cua hat, ca ve dp ldn (vi da biet nang lupng hat) va phuong (vuong goc vdi khe). Khi hat qua khe thi ta co the xac dinh dupe vi tri cua hat nhung thanh phdn xung lupng Px theo phuong x cua hat trd nen khac khong vi hat chuyen dong lech vdi phuong ban d£u ve mot diem nao do tren anh nhiiu xa. VI ta khong biet hat roi vao d&u tren man hinh nen ta co mot do bat dinh tuong irng"APx ve thanh phan xung lupng theo phuong x. Theo ly thuyet nhilu xa thi vi tri cua van tdi thur nhat dupe xac dinh theo cong thurc sina = Mac d£u ta khong the biet chfnh xac diem roi tren man nhung vi tri co xac suat ldn nhat vln d lan can vung trung tam anh nhidu xa. VT vay ta co the coi Px nam trong khoang tvr 0 den P sin a , nghTa la APx = psina =p%- APx = = £.
De giam dp bat dinh ve thanh phdn Px ta co the md rong khe d, nhung khi do lai tang do bat dinh Ax.
Ta co he thiic
AxA Px = h
N hu vay cung mot thf nghiem ta khong the ve nguyen tac lam nho dong thdi do bat dinh vg vi tri Ax va vS thanh phdn xung lupng theo phuong x, APx. Vf du tren da minh hoa nguyen ly Heisenberg phat bieu nam 1927, goi la nguyen ly bat dinh Heisenberg. Co lupng tvr da chumg minh rang ddi vdi moi kieu thf nghiem cac do bat dinh Ax va APx lien he vdi nhau theo he thurc
A xA Px > — 1 - 27r
Can nhan manh rang he thuc nay co hieu luc ca trong ly thuyet, no co the dupe suy ra tvr he thuc AxAK s i da noi d tren, trong do Ax la kfch thuoc nhom song , AA' la gia so cua so song trong nhom song.
2.3.2 He thuc bat dinh ve nang lupng va thcri gian. Ta co the thiet lap he thtic bat dinh Heisenberg cho nhieu cap dai lupng khac nhau. Vf du muon do nang lupng E cua mot vat ta phai tien hanh trong mot thdi gian At. Nhu vay ta co the chung minh rang giura do bat dinh ve nang lupng va do bat dinh ve
60 Chucmg 2. Mot sd' van de vat ly lucmg tu
thdi gian co he thurc
A E A t > ~ ~ 2ir
Ket qua la chi co the biet nang luong cua mot vat vdi do chfnh xac cao nhat (AE = 0) neu phep do dupe tien hanh trong khoang thdi gian vo han (At = oo). j Nguyen ly bat dinh nay keo theo mot he qua quan trong la cac he lupng tu nhu nguyen tu co the ton tai d mot trang thai trong mot thdi gian rat ngan, goi la thdi gian song r. Muon do nang lupng cua he thi phai do trudc khi trang thai do bi phan ra. Nhu vay do bat dinh cua he v6 nang lupng se la
A E = va AE T > —
2?rr _ 2tr
2.3.3 Nguyen ly bo sung. Nguyen ly bat dinh da khang dinh la trong cung mot thf nghiem khong the dong thdi do dupe cac gia tri cua hai dai lupng goi la lien hop (nhu Px vdi x, E vdi t) vdi do chfnh xac tuy y. Tu do suy ra rang cac tfnh chat song va hat cua vat chat khong the xac dinh dong thdi trong cung mot thf nghiem.
Vf du, neu ta lam thf nghiem de do cac dac trung hat cua mot ddi tupng thi d day nhat thiet phai co A x va At bang khong vi theo dinh nghTa mot hat co the dupe dinh xu vdi do chfnh xac cao vo han d bat ky thdi di£m nao. Con xung lupng va nang lupng la cac dac trung song (A = h/p, v = E/h) thi theo nguyen ly bat dinh, hoan toan khong biet.
Nhu vay khi cac tfnh chat hat xuat hien thi cac tfnh chat song bi loai trir. Viec khong the quan sat dupe dong thdi cac tfnh chat hat va tfnh chat song cua vat chat da minh hoa mot nguyen ly do Niels Bohr dua ra vao nam 1928 ma ngudi ta goi la nguyen ly bo sung.
Cac tfnh chat song va hat bo sung cho nhau theo y nghTa la ca hai mo hinh song, hat deu can thiet de ta hieu dupe d&y du cac tfnh chat cua vat chat my vln khong the quan sat dupe dong thdi cac dac trung song va hat.
2.4 Phuong trinh co ban cua co hoc luong tu. Phuong trinh Schrodinger
De mo ta mot cach dinh lupng trang thai chuyen dong cua cac ddi tupng vi mo co luong tfnh song hat ta phai thiet lap mot phuong trinh the hien dupe tfnh chat do, giong nhu phuong trinh Newton ddi vdi cac vat vT m o hay nhu phuong trinh Maxwell ddi vdi song dien tir.
2.4. Phuang trinh ca ban cua ca hoc luang tu 61
Phuang trinh cdn tim phai dong then thoa man gia thuyet De Broglie va su )hu thuoc gitfa nang luong va tcin so thong qua hang so Planck.
Ta xet mpt hat vi mo co khoi luong m chuyen dong vdi van toe ««c trong not trucmg luc U = U(x,y,z,t). Tinh chat hat co the dupe dac trung bang hai lai lupng E va P
E — T + U vdi T = ^ - ( P 2 + p 2 + p 2 )
2m 1 y z
Tfnh chat song dupe dac trung bang budc song va tan sd lien he vdi cac dai upng tren bang cac cong thurc:
^ , h
E = hu- p = -
1.4.1 Hat tir do. Day la trudng hop hat chuyen dong trong khong gian f / = 0. lam song De Broglie co dang:
%(r,t) = A - e ~ ^ Et~pff) = Ae-%(Et- p*x- p'‘y- p' z'> (2.27) ^ y dao ham bieu thuc (2.27) theo thdi gian ta dupe:
dip
- - E *
ur day ta nit ra
dt h
d%
ih— = E * (2.28)
,ay dao ham bac hai (2.27) theo toa do x,y,z ta co the viet d2$> <92$ d2^ 1 r 2 T
rp" 2777
+ H----= 0
n2 h2
= T nay la vi hat tu do ta co E = T nen viet duac: 2m J
f ^ E V = 0
h2 (2.29)
62 Chuang 2. Mot sd' van de vat ly lucmg tu
2.4.2 Hat trong mot truomg luc. Xu£t phat til phucmg trinh (2.29), Schrddinge da dua ra mpt gia dinh v i sau dupe thvra nhan nhu mot tien de cua co hoc lupng tu: chuyen dong cua mot vi hat bat ky trong mot truOng luc U ± 0 cung dupe mo ta bang phuong tnnh giong nhu (2.29) trong do T = E dupe thay th6 bdi T = E - U, nghTa la phuong trinh co dang:
A# + ^ - ( E - U)^ = 0 (2.30)
h
Ket hop phuong trinh (2.30) vdi (2.28) ta dupe phuong trinh Schrodinger dang tong quat:
ih ^- = - ^ A $ + £/* (2.31)
ot 2m
Neu the nang U la mot ham khong phu thuoc vao thdi gian thi nang lupng toan phan cua vi hat se bao toan, trang thai cua he trong do nang lupng co gia tri hoan toan xac dinh, khong doi, dupe goi la trang thai dimg. Trong trucmg hop nay ham song $ co the dupe bieu diln dudi dang tich cua hai thua so, trong do mot thvra sd chi phu thuoc vao toa do, thvra sd kia chi phu thuoc then gian, nghTa la ta co the viet
$(x ,y,z,t) = $ (x , y, z)tp(t) (2.32)
Thay (2.32) vao (2.31) ta dupe hai phuong trinh
Q
ih— [^(x, y, z) )
Sau khi gian udc $ d phuong trinh dau, (<)= (2.35)
Phuong trinh (2.34) dupe goi la phuong trinh Schrodinger trang thai dung co nghiem la ^{x,y,z). Nghiem cua phuong trinh Schrodinger tong quat la:
y> {x,y,z,t) = '& {x,y,z)e~, * t (2.36)
2.5. Toan tic trong co hoc luong tu 63
Gin luu y ring: ban than ham song ^ noi chung la ham phirc khong co y nghTa vat ly true tiep ma chi co binh phuong modun cua no mod co y nghTa vat ly. Dai lupng |$ |2 xac dinh khPng phai mat do mot dai lupng vat ly nao nhu trong ly thuyet co dien ma no chi xac dinh mat do xac suat dai lupng do, vf du mat do xac suat tim thay hat trong mot don vi the tfch tai mot thcri diem nhat dinh |\I>|2 dupe tfnh nhu sau
|tf|2 = $ • >J* (2.37)
Trong do ’£* la ham lien hop phirc cua '£. Vi xac suat tim thay hat trong toan bo khong gian bang 1 nen ta co dieu kien chu^n hoa cua ham song:
J J J x ,y /// ,z\^\2dxdydz = 1
Mat khac tir (2.36) ta co : z) ■e~'^t = 'S>*(x,y,z)e1£ t. va ${x,y,z,t) ■ i*(x,y,z,t) = ^>{x,y,z) ■ ^*(x,y,z) nen ddi vdi trang thai dimg su phan bo xac mat tim thay hat khong phu thuoc vao thdi gian.
Vdi nhung nhan xet tren day chung ta thay rang ve mat toan hoc, ham ;ong phai thoa man nhung dieu kien sau day: don tri, lien tuc, huu han.
1.5 Toan tu trong co hoc luong tu
5.5.1 K hai niem toan tur. Toan tir la su bieu di<§n tupng trung mot phep toan lao do (dai sd, vi phan, tfch phan...) dupe tien hanh ddi vdi mot ham sd de ihan dupe mot ham sd khac va dupe viet nhu sau:
Z/’J' = i va thi no cung co the d vao trang thai dupe xac dinh bang to hop tuyen tinh cua hai ham
$ = c i $ ,+ c 2$ 2 (ci,c2 la cac hang sd). (2.40) Toan tu tuyen tfnh L dupe goi la tir lien hop neu thoa man dieu kien:
f VLVdV = [ ^L*^*dV (2.41)
Jv Jv
Toan tu tu lien hop con goi la toan tir Hermit.
Vf du toan tir ^ khong phai la toan tir tu lien hop, nhung toan tir lai la toan tir tu lien hop. That vay
r+°° „ r+°° d<\> / VLVdx = i / V*^-dx
J — 0 0 J — OO
r+°° rfxb*
= ^>~dx
J-OO dX
+°° _ , ’5—— dx
—oo
- - / : j — i + 00
dx
L
Chu y rang neu L = thi L* - - i
— OO
^L*^*dx.
Doi hoi cac toan tir trong co hoc lupng tir phai la cac toan tir tu lien hop xuat phat tir co sd vat ly la gia tri trung binh cua dai lupng vat ly L phai la mot gia tri thuc, turc la L = L*\ ma L = J ^*L^dV; L* = f^ I'^ 'd V . Do do j V ' L V d V = f V L * V mdV.
Cac toan tir lien hop co hai tfnh chat co ban sau day:
2.5. Toan tu trong ccfhoc lucmg tu 65
1. Cac tri rieng cua toan tu tu lien hop bao gid cung la tri thuc Ln = L*n. 2. Cac ham rieng cua toan tir tu lien hop ung vdi cac tri rieng khac nhau, hop thanh mpt he ham true giao. Tinh chat nay dupe bieu di£n nhu sau:
/= | ° n * m (2.42) I 1 neu n = m.
Bay.gid ta xet hai toan tir L M. Neu L(M^) # M(L'J') thi ta noi L va M khong giao hoan vdi nhau. Neu L(M'Jt) = M(L^) thi ta noi L va M giao hoan vdi nhau.
Vf du 1. Hai toan tu L = x- va M = ^ la khong giao hoan vdi nhau vi
L(M ) —> ekM,(v+2n)
Dieu do co nghTa la
e * M' 2* = 1 (2.54)
va ^ phai la cac sd nguyen
^ = 0,±l,±2,--- = m (2.55) h
Nhu vay ham rieng cua toan tu Mz la \& = c • eim*, con tri rieng cua no bang Mz = mh. Trong co hoc lupng tu hinh chieu cua moment dong lupng cua he vi mo nhan nhung gia tri gian doan bang sd nguyen ldn h. Trong trudng hop nay ngudi ta noi Mz da bi lupng tu hoa. Sd m xac dinh do ldn cua Mz dupe goi la sd lupng tu tvr.
7. Phuong trinh binh phuang moment dong luong:
A,f2
- ^ t + k 2* = o (2.61)
Nghiem rieng cua phuong trinh (2.61) co dang
tf(x) = c - e ±iKx (2.62)
VI dong nang cua mot hat tu do T = mg- luon luon ldn hon khong do do K luon luon la mot so thuc va nghiem (2.62) thoa man dieu kien lien tuc, don tri, huu han voi moi gia tri T > 0. Tham so K 6 day dong vai tro so song. Su phu thuoc cua nang lupng vao sd song K cd dang
_ h2K 2
L = -------
2m
2.6. M6t sS b a i toan dcm gian cua co hoc lucmg tu 71
U0
I JI m
0 CU X.
H inh 2.10: Scr do ho the nang.
Su phu thuoc giua E va K dupe goi la pho nang lupng cua hat. Trong trucmg hop nay pho nang lupng dupe xem la pho lien tuc va co dang ham parabol. Vi K = % nen ta co
'J'(x) = c • e± «Pl1
Ham song nay la ham rieng cua toan tu Px. Nhu vay hai toan tu H va Px co cung ham rieng nen chung giao hoan vdri nhau va do do nang lupng E va dong lupng P cua hat co the dupe do chfnh xac dong then.
Con xac suSt tim hat tai mot vi tri nao do trong khong gian bang $*$ = \c\2e±iKx ■ eTiKx = |c|2 = const,
khong phu thuoc vao toa do. Dieu nay chung to toa do cua hat la hoan toan bdt dinh. Ket qua nay phu hpp vdri nguyen ly bdt dinh Heisenberg.
2.6.2 Hat trong ho the nang. Ta xet chuyen dong cua hat trong mot vung the nang bien doi nhu sau: (Hinh (2.10))
U = U0 tai vung x < 0, U = 0 tai vung 0 < x < a, U = U0 tai vung x > a. Vung cd the nang bien doi nhu the nay dupe goi la mot ho' the nang, a dupe goi la be rong, U0 dupe goi la chilu cao ho the nang. Ta xet trucmg hpp nang lupng toan phdn E cua hat nho hon chieu cao ho the.
Theo vat ly co dien trong truomg hpp nay hat chi cd the chuyen dong trong ho' the ma khong the nao vupt ra ngoai dupe.
1. Trucmg hap hang rao the vo han, U0 —> oo. Khi do ham song o vung ngoai ho phai bang khong, con ham song d trong ho the dupe xac dinh bdi phuong trinh song (2.61)
d'2^
— - + K - * = 0, khi 0 < x < a (2.63)
72 Chucmg 2. Mot so van de vat ly lucmg tu
Vdri dieu kien bien suy ra tut dieu kien lien tuc cua ham song ’f(O) = $(a) = 0
Nghiem tong quat cua phuong trinh (2.63) cd dang
tf(z) = AeiKx + B e ~ iKx
ung dung dieu kien bien ta cd
x = 0 — * A + B = 0 A = —B
x = a — > AeiKa + B e ~ iKa = 0 eiKa - e~iKa = 0
hay la sin Ka = 0 va K = ^ vdri n = l, 2,3, •• • Thay gia tri cua K vao bieu thi'rc nang luong ta cd
E - h2Rn _
71 2m 2ma2
(Chu y rin g d day khong ton tai trang thai ling vcri n = 0, K = 0 vi khi do ^(x) = 0.) Nhu v^y vi K nhan nhung gia tri gian doan nen nang luong E cung nhan nhung gia tri gian doan, noi cach khac pho nang luong cua hat khong lien tuc. Nang luong nho nhat ma hat trong ho the cd the cd la khong phai bang khong ma umg vdri n = l, K = J va
h2n2 h2 E\ =2 m a 2 8 ma2
Khoang cach giua hai muc nang luong cho phep canh nhau tang theo so lupng tu n va ty le vdri hieu binh phuong giua chung
A^ = ^ [ ( n + l)2 - n 2] - -n
2 m a 2
Be rong cua ho the nang cang lorn thi AEn cang nho. Doi vdri dien tu, khi a = 1cm
E n = 3,37- 10_15n 2 ■ eV
AEn = 0,7- 10_15n • eV.
Khi a = 5A,
E n = 0,68 n2 eV
AEn = l,36neVr.
2.6. Mot so bai toan dcm gian cua ccf hoc lucmg tu 73
Hinh 2.11: a- Ham song cua vi hat trong ho the nang, Uo gi&i han, b- Xac suat tim hat Wn trong ho the nang, U0 gi&i han.
BSy gid chung ta co the viet bieu thurc cua ham song ung vdi cac gia tri nang luong cho phep:
TL7T
$„(x) = A n \etKnX - e~'KnX1 = A n sin K nx = A n sin(— x) L J a Bien do An co the tim dupe tu dieu kien chudn hoa:
[ |'J,n|2dx = 1 va bang A n =
Jo
Mat do xac suat tim thay hat
Wn(x) = |# „(x )|2 = -s in 2( — x)
(2.64)
a a(2.65)
Tren hinh (2.11) bieu d iin sir phu thuoc ham song va xac suat tim hat theo x.
2. Trifcmg hap hang rao theU0 la gi&i han, U - U0 < oo. Trong vung II hinh (2-10) nghiem tong quat phuong trinh van nhu cu co dang
*(x) = AeiKx + Be -iKx (2.66)
nhung se co cac dieu kien bien khac.
Trong vung I va III phuong trinh Schrodinger co dang:
h2 d2