=
. B) i ta n ca g vuon B ASA i (v ) (ycbt ° 45 = p ( >=
t ma i ha y tha y e d a v B A m die g trun a l I i Go / b
. AB n tuye o gia o the ) (SAB 1) (ABC : g phan
) deu C AAB i (v B A 1 I C ^
) (SAB 1 I C
n xie g ducjn a l : CS u chie h hin a l : S I
] (SAB) ="Tscr i § d = p
= 3 tan( : O C a T 2 iS 3 aV
3 aV I C
I S
9 9 i B a
m die t Xe . C a v B t bie n pha m die i ha o ch ) (a g phin t ma g Tron . (a)] , [AC = ] (a) , [AB : g ran h min g Chiln . ;CCB = C X B
i Gia
) (1 Ai ta n ca C AAB => B iCc = C ^CB : y e D
. (a) g xuon AT ti a h c go g vuon g difcrn a l H A g Difn
n xie diiting c ca a l : C A ; B J A
. do u t j thi o the u chie h hin c ca a l : C H ; B [ H
) (1
C A = B A ^ = f Ti
bi da o d 6 c n xie g dudn c ca a cu g ufn g tuan u chie h (hin C H = B H >= vuoc go h can - n huye h (can ) 90° = i (f C AAH = ) 90° = i (f B AAH >= (dc) (ABC))T(ACr(ABC) 5lABr ) Ufng (tuan i Xcf = I ABI
• Phrfdng phap 1
Xac dinh (p bSng cdch diftig theo din h nghia.
• Phtfcfng phap 2
Xac dinh gian tiep cp bSng din h ly di§n tich va hin h chieu. n PhUctag pha p 3
Trong thUc te, ngiTcri ta diftig va tin h goc cua 2 mat phSng bang dinh ly ba dUcfng vuong g6c :
Goc cua dUcfng xien va hin h chieu la goc cua mfit phin g chieu (a) va mat phang hi chieu (P) tao bdi dudng th^ng ® va dudng thin g ® : cp = I^Atl = [tSlilpn
0 Ghi ch u : 0 < cp ^ 18 ABCD ' la hin h bin h hanh (ycbt).
Bai129
Cho hai hin h binh hanh ABCD va A'B'C'D' khong nkm cung trong mat ph4ng. a/ ChiJng min h (AA'B) // (DD'C).
hi Mot mat ph^ng bat ky (P) c^t AB , B'A , CD ' va CD ta i M , N , R, S. Ha y n6i ro hin h tin h thiet dien nhan dUcfc ?
Hvldng dltn
DQC gia tif giai.
Bai 130
Cho hin h chop S.ABCD c6 day la hin h bin h hanh. Goi I la trun g diem SA va M la diem lifu dpng tren canh AD . Xe t N la diem thupc SM thoa I N // (ABCD).
a/ Tim quy tich cAc diem N .
b/ Trong cau nay gia suf M chay tren ca chu v i hin h binh hanh ABCD. Tim quy tich cua N .
Giai
a/ Ta CO : I N // (ABCD)
I N e (SAD) I N //A D
N e I J : la dudng trun g bin h cua ASAD.
K hi :
fM s A N s I 1M = D=> N = J
Dao la i lay diem tuy y N Q e IJ .
=> INo//(ABCD )
Vay quy tich N la doan I J (ycbt).
b/ Goi E, F thuf tU la trun g diem SC va SB.
TifOng tif ta c6 quy tich cua N la chu v i cua thie t di^n hin h bin h hanh IJE F (ycbt). 69
THG OJCIN T MO \lQl C G6 G THAN E S T CA G PHAN T MA : 5 g Dan 1 13 i Ba
n die t thife' m Ti . AB 1 C B; AB L _ A S 6 c D S.ABC p ch6 h hin o Ch ? h than o ta p cho h hin t ca
i Gia
) (AB 1 ) (a , Ma qu ) (a y e D
C (a)//B
A "(a)//S
C (a)o(ABCD)=^MN//B
: o d o D
C PQ//B = ) (a)o(SBC
A PM//S =) ^CSAB Icajr
) bupc g rin i gh n ca g (khon N Q =) (SCD o ) (a
- D^:
y tha M P a v P Q, NQ , MN n tuye o gia c ca p tig' n lie i No . kin p khe g chiin
i (vd P MNQ g than h hin a l c dUd n nha n die t thie y Va . ben h hin g tron a nh m da o t c difa , QP) > N M : y da i ha 2 Bai13
g vuon n ca C AB c gia n tar ; AB 1 A S 6 c D S.ABC p ch6 h hin o Ch do Mi ta B A 1 a t ma a m n die t thie m Ti . AB n doa g tron g don u Itr ? h than o ta p cho
i Gia
: a v Ma qu ) (a : O C aT
) (SAB e A S / (a)/ > = B A 1 ) f(a
) (ABC c C A / (a)/ BC 1 ) (a 1
A MQ//S = ) (a)n(SAB
C MP//A - ) («)n(ABC
. APMQ a l c dira n nha n die t Thie
3 13 i Ba
C n ItJ y da g than h hin a l D ABC y da 6 c D S.ABC p cho h hin o Ch a qu a t ma a m n die t thie m AB.Ti n tre g don u lo m die t mo a l Mi Go ? h than o ta D S.ABC p cho h hin
i Gia
< a v Ma qu ) (a y e D
D B / (a)/ > := D C 1 ) (a , BD X DC A S / (a)/ > = D C i ) (a , SA 1 D :C
M
Gia i
Mat phin g ((5) 1 A B ta i I do do :
:(P)//Ax = (BAM)o(AMN) : :((!)// A y = (ABN ) o (BMN ) r::>
'(P )^(BAM ) = IL//A x '((3) o (AMN ) = J K // A x '(P) ^ (ABN ) = I J // B y 1 (P) o (BMi\ L K // B y
i K
Thiet dien nhan diTcrc kh i ((5) X (AB) tao thanh vcri tijf
N
dien ABMN la hin h binh hanh IJK L (ycbt).
Dang 6 : MAT PHANG CAT S E VUONG GOC Vdl MAT PHANG LIEN Odl CUA VAT TH^ L PHirONG PHA P
Ca sa cua phaang phap la quy doi bai toan dimg thiet di^n vuong gdc v&i mat phang (a) thanh bai toan dying thiet di^n song song v&i mqt dU&ng thang, ma dU&ng thang do vuong gdc san v&i mdt phdng (a) da cho trong gid thiet tim thiet di^n : sau do ap dung dinh ly giao tuyen song song va phuong phap difng thie t dien (ycbt).
n. CA C BA I TOA N C O BA M
Bai 135
Cho hin h chop S.ABCD c6 SA 1 (ABCD); SA = a va ABCD la hin h vuong canh a, ta m O. DiTng va tin h dien tich thie t dien qua SO va vuong goc vdi (SDC).
Gia i
Qua O ditog EF // A B i . (SAD) vdi E e AD ; F e BC
^ EF 1 (SAD)
Do do thie t dien nhan duac la ASEF {t = 90") ycbt.
Goi S la dien tich thie t dien do :
=> S = -EFSE -= - a
2 2 l l 2
Bai 136
1 (ycbt).
Cho hin h chop S.ABCD c6 ABCD la hin h vuong ta m O, canh a. Dudng cao hin h chop la SO. Goi I la trun g diem CD va (p = [ SI ; (BCD)] ((p > 45°). Xet mat phSng a qua A B va vuong goc (SCD). Xdc dinh thie t dien ciia a va hin h chop va tin h dien tich thie t dien theo a v^ (p.
Gia i
Goi J la trung diem A B =?. CD 1 (SIJ)
Ma CD c (SCD) => (SIJ) J_ (SCD)
Ha J H 1 (SCD); H e SI
Diing EF qua H va EF // A B
=> EF 1 (SIJ) vdi E G SD; F e SC
Thiet dien nhan difoc la hin h thang can ABE F
(day \dn AB; dUcfng cao JH )
Trong AIH J (fi = 90")
7 1
^ SI--—p ( 2cos
o asin = p Usinc --- J •iH
p acosc = ) IJcos <=
) tu c g6 p (2( p acos2i - = F E > <=
: a l n die t' thie a cu S h tic n Die
^ a 1 1 cos2 =
) (1 ) BC//(P ^
P MQ//N
) MQc(BAD • : tif g Tuon
) (CAD c P N
) (P / / D A > = P M, MQ / / D A = ) (CAD n ) (BAD
)(2
P N = N M > = i tho h hin a l Q MNP
)(3
C B / / N M : 6 c a t C AAB g Tron
N A N M
Nhif vay mSt phSng (P) c6 tinh chat tren la ton tai va ta c6 each difng mat phang (P) nhu sau: AN AD
Chia AC thanh hai doan theo ty so : (7) CN BC
Prong maet phaung (ABC) kcu MN // BC
Trong macl phaung (CAD) kcu NP // AD
Difng mat phang chuTa MN va NP cat BD tai Q, do chinh la mat phing (P) phai difng v^ MNPQ la hinh thoi.
That vay : Vi :
MN // BC NP//AD :
MN AN BC AC NP CN AD AC
<=> AC.MN = AN.BC <=> AC.NP = AD.CN
(8) (9)
Tif (7) va (9) = Tif(7) va (10)
AC.NP = AN.BC >MN = NP.
(10)
Dong thcri :
,P)n (DBC) = PQ / / MN ^^^^ (P)o(BAD)=MO//NP
Bai 138 (DAI HOC SLf PHAM - 1976)
Day cua hinh chop S.ABCD la hinh chuT nhat ABCD c6 AD = BC = 2a va AB = DC = 5a. Goi H la hinh chieu vuong goc cua dinh S tren day ABCD. Bie't rang diem H nam tren doan thing IJ, trong d6 I la trung diem cua AD va J la trung diem cua BC. Cho SH = 2a; I H = a. 1/ Chijfng minh r^ng tam giac ISJ vuong. Tinh gia tr i g6c nhi di?n tao bdi hai mat ph^ng (SAD) va (SBC).
21 Tinh dien tich xung quanh va the tich hinh chop.
3/ cat hinh ch6p bdi mot mat phing vuong goc vdi I J tai diem K. H6i thiet dien la hinh gi ? 4/ Gia sijf IK = x. Goi y la di§n tich cua thiet dien MNPQ (M, N, P, Q la bon dil m cua mat phing thiet di$n 1 (ABCD) vuong goc cat bon canh cua hinh ch6p). Tinh y theo a va x (x6t trudng hgp K nkm giaa I va H hoac K nam giffa H va J).
Giai
1/ Xet AISJ ta c6 SH la difcrng cao :
JHI.H J = HI.(AB - HI ) = a(5a - a)
JSH^ = 4a2
SH^ = HI.H J
=> AISJ vuong goc tai S (dpcm).
Ta c6 :(SBC) n (SAD) = x'Sx
S J 1 B C ^ S J 1 x'Sx
^ |SI 1 AD => S I 1 x'Sx
=> = a = [(SBC); (SAD)] = xS ^
=> = a = 90" (dpcm).
2/ Dien tich xung quanh S^, cua hinh ch6p S.ABCD :
S,, = 2dt(ASAB) + dt(ASBC) + dt(ASAD)
73
R S X D C X i = ) dt(ASCD = ) dt(ASAB2
: 6 c a T . CD n tre S a cu u chie h hin a l R o d g Tron
^ 5a = 2 4a + ^ a = ^ SII + ^ HR = ^ SR
aS = SR >=
^ = s aV X a 5 X - = ) dt(ASCD = ) dt(ASAB
2 2
^j5 2a = 2ayfE X a 2 X - = J S X C B - = ) dt(ASBC
2 2
s V ^ a = s aV X a 2 X ^ = I S X D A X - = ) dt(ASAD
2 2
) (ycbt s V ^ 8a = s V * a'" + s V ^ 2a + S V ^ 5a = >= : D S.ABC p ch6 h hin a cii V h tic e Th
. (ycbt) = ^x2ax5ax2a = ^dt(ABCI))xSll = V
t thie p ha g trUcfn i ha 6 c a t D C a v B A n tre N, Ma cii i tr i v y tij y c D /3 . AD / / C B/ / ) (MNPQ > = J I ± ) (MNPQ n die t Thie
, SC c (hoa A S , SD , CD , AB t cS ) (MNPQ g phan t Ma
i ta ) SJ c (hoS I S t ca Q P . Q , P , N , Mf ti f thti o the ) SB : O C a t , K'
D A / BC/ / / Q P / / N M
a v N M a l y dd i ha g than h hin t mo a l Q MNP y Va m la ) (SIJ g phan t ma n nha p cho h hin y tha y e D . PQ . NP = Q M > = g xufn i do g phan t ma
. (ycbt) n ca g than h hin t mo a l Q MNP n die t Thie
a 2 = N M 6 c a T. HI n tre d K : i TH • / 4
x 2ax K SHxI , „„ ' KK . IK
I II I SI I II x a- K U ' SK P Q
x 2 = ' KK « -
) 2ax^^2(a-x
D A
a a 1 11 I S
: a l Q MNP g than h hin a cu y h tic n die y na p hg g Tri/dn
„ a 2 + x 2a-2 N QP+M
x 2 X = K K X ^ -^ = y
2 2 ^
Trirdng hop nay dien tich y ciia hin h thang MNP Q la : x - a
y =^^.KK - = -l -+ 2a 5 a - X
2
y =
rx + 3a^ 4
5a ' = -(-x' ^ + 2ax + 15a^). 8
Bai 139 (BA I HOC Si/ PHA M - KIN H TE - TA I CHIN H - 1977)
Trong mat phftng (P) cho hinh chCf nhat ABCD c6 cac canh AB = 2a; A D = a. TiT A ke di/dng vuong goc vdi mat phang (P) va tren do lay doan AS = 3a.
1/ Tinh cac doan SB, SC, SD theo a.
2/ Chijfng min h rkn g cac tarn giac SDC va SBC la cac tam giac vuong.
3/ Mat phang chijfa DC cat SA ta i M va SB tai N . I lay xac dinh tin h chat cua tOf giac CDMN. Dat A M = x. Tin h dien tich cua tuf giac CDM N theo a va x.
Gia i
1/ Ta CO :
. SB' = SA' + AB ' = 9a' + 4a' = 13a' ^ SB = asf\3 (ycbt)
. SC' = AC ' + SA' = AB ' + BC ' + SA' => SC' = 4a' + a' + 9a'= 14a'
=> SC = as/u (ycbt)
. SD' = AD ' + SA' = a' + 9a' = 10a' => SD = aVio (ycbt).
2/ Theo dinh ly 3 difdng vuong goc, ta c6 : SA1(1')1
3a - X
AD ID C I SAl(P )
. SD 1 DC => ASDC vuong ta i D (dpcm)
AB 1 BC => SB 1 BC => ASBC vuong ta i B (dpcm).
3/ Tinh chat cua tiJ giac DCNM .
Goi (a) la mat phang qua DC; (a) cSt SA ta i M va cat SB ta i N . DC // AB ^ M N // DC // AB
DC 1 (SAD) =i. M N 1 (SAD) =:> M N 1 M D
Vay DCN M la mot hin h thang vuong (hai day DC // M N chieu cao la DM ) (ycbt). Dien tich cua tuf gidc DCN M la :
dt(DCNM) = '^"^""^ ^ X D M
D M = N/AD'+AM " = sfa" + X'
Ta CO :
M N S M AB SA
M N = 2a(3a-x) 2(3a-x) 3a
2a + (3a -x )
dt(DCNM) =
dt(DCNM) = 6a - x Va" + X" (ycbt).
7 5
A V H CAC G KHOAN G DAN C C A 8: de Chuyen G CHUN C GO G VUON G DirdN
KG TRON H CAC G KHOAN G DA« C CA l Dpjf C XA A t Tina : 1 l to^
T MO N DE M DIE T MO Q T H CAC G KHOAN H TIN : 1 g Dan
P PHfl G PHirOM L
: u sa f nhi n ba r cc c bud 2 n hie c thif n ca p pha g phifan a cii sa r Cc pt mS t mo g difti h eac g ban , (a) i vor H Mc go g vuon n doa h din c Xa : i B • ] (a) ; d[M = H M> = ) (d 1 H Ma h , (d) n tuy§' o gia o the
sa c ho h hin y l h din c ca p phe g bSn h tin c difa H M = ] (a) ; d[M : 2 B • doan ddi do la goi con (a)] d[M; each Khodng : 1 i chi i Gh O goc. vuong diiimg 3 ly dinh trong goc vuong
the hay thiic cong b&ng MH t'lm con ta nay Sau : 2 i chi i Gh O tich di$n phap phUctng (xem the vat tich) dien (hay tich tich). the phap phUctng va
M ILBAITAPCOBA
0 14 i B a
2B = B A a v Bi ta g vuon c gia m ta a l y da C S.AB p cho h hin o Ch . (SAC)] ; d[B h Tin . (ABC)
i Gia
) (SAC : c A S; (ABC) ± A S o D
. BC n tuye o gia o the ) (SAC 1 ) (ABC
H i ta C A 1 H B a H
. (SAC)] ; d[B = H B >=
: 90°) =i (f C AAB g tron g luan e thur e H
5 1111 1
• + •^ 4a ^ 4a ^ BC ^ AB ^ H B = ^ HB" 4 3 = B H « = ) (SAC ; d[B : y Vaa 2. (ycbt)
1 Bai14
Theo dinh ly Thales M N B M 2
S A ' B S ~ 3
M N = -SA = - h (2)
Thay (2) vac (1) => I H = -.- h = - h
2 3 3
Vay d[I; (ABC)] = ~ (ycbt).
O
Bai 142
Cho tuf dien ABC D c6 AB = CD ; B C = BD con A C = AD. Dang A H ± (BCD), a/ Chiifng minh H nam tren trung tuyen BI ciia ABCD. b/ Xac dinh d[A; (BCD)]. Giai
a/ Theo tinh chat dudng trung tuyen cung la dudng cao ha til
dinh cua tarn giac can, ta c6 :
j™ ^ ^ => C D 1 (ABI); ma C D c (BCD)
[CD X BI
=> (ABI) 1 (BCD)
Ha dudng cao A H cua tuf di^n ABC D
=^ A H 1 C D => A H c (ABI) hay H e BI (ycbt)
b/ Theo cau tren => A H = dlA; (BCD)] (ycbt).
Bai 143
Cho hinh chop S.ABC c6 SA 1 (ABC) va AABC deu canh a.
a/ Tinh dlB; (SAC)]. b/ Gi a sOf SA = h. Tinh dlA; (SBC)]. Giai
a/ Nhan xet thay (ABC) 1 (SAC) theo giao tuyen AC .
Ha B H 1 A C tai H.
d[B; (SAC)] = B H = (dtfdng cao A deu)
b/ Goi M la trung diem BC , ta c6 :
Mk BC c (SBC) => (SAM) 1 (SBC) theo giao tuyen SM.
Dirng A K 1 SM => A K 1 (SBC)
d[A; (SBC)] = A K
1111 1
Trong do : A K ^ SA' ^ AM ^ h^ J _ 4
h^^Sa ^
A K ^ 3aV 4h'
Vay d[A; (SBC)] = , (ycbt).
4h^
77
4 14 i B a
90 ^ C XB C XB a v a 3 = D S = B S = A S 6 c D S.ABC p cho h hin o Ch . 2a = D B t bie i kh ] (ABCD) ; d[S h Tin
i Gia
h kin g dudn n tro g ducfn n tre a D, B > = " 90 = KDC. - C XB : y e D . AC m die g trun a l Hi Gp
D H = B H = A H >=
3 . SD = B S = A S6 ci la t thie a Gi . .\ABD p tie i ngoa n tro g di/dn e tru a l n So d o D
/) (ABCD E E ) (ABD 1 HS D^^^^^^.^H S = l (ABCD) ; dIS >=
) 90" i (f A ASH g Tron
2^[2.a , ^ -/to - ^ a' ^ ^|9a'^ ' HA'' ^ VsA'- = H S >= C
. (ycbt) a . 2 V 2 = l (ABCD) ; dIS y Va
(HA G THAN G Dl/CJN T MO T TL H CAC G KHOAN I TIK : 2 g Dan G PHAN T MA T MO l Vd G SON G SON
P PHA G PHirON L
(« / / ) (A g thSn g ducrn f t£ h eac g khoan m ti p pha g phiftrn a cii o s o C : c biTd i ha m la a t) (u n de
a cu t vifi U U h tin a tho i pha g (nhifti y y tij M m die t mo y La : i B • . («) / /) ((5 n tre y ha ) (a / /) (A n tre ) nay u sa n toa h tin h trin a qu ycb g tron m ti n ca h eac g khoan a l H M => (a) _ J H Ma H : 2 B • . biet)
=* d[By; (CAx)] = BA = 2a (ycbt)
Tuang tu ha AH 1 BC tai H
d[Ax; (CBy)] = AH = 2a (ycbt).
Bai 146
Cho Ax, By la hai tia vuong goc vdi mat phang hinh thoi ABCD d cung mot phia. Tinh d[(DAx); (CBy)l biet hinh thoi canh a c6 dien tich bSng a^Vs
Giai
D6 y thay hai mat phftng (DAx) // (CBy) va chung ciing vuong g6c v(Ji mp(ABCD) theo cac
giao tuyen AD va BC theo thil tu do.
Chon A e AD va ha AH 1 BC; tai H
AH = d[(DAx); (CBy)]
Lai CO vdi S la dien tich hinh thoi ABCD canh a. S=i.AH.BC « ^ = l.AH.a <^ AH = ^ a 2 4 2 2 Vay : dl(DAx); (CBy)] = (ycbt).
y
D
Dang 3 : TINH KHOANG CACH TLT MOT DIEM DEN MOT DUCING THANG LPHU'ONGPHA P
* PPi : Co so cua phaong phap thuf nhat de tim khoang each tiS diem M den mot dudng th^ng (A) trong khong gian ta can thiTc liien hai bUdrc :
• Bi : TiJ di6m M can tim khoang each trong khong gian ha dadng vuong goc M H vdi dudng thang (A).
• B2 : Do dki M H = dlM; (A)] la khoang each can tim. (Xem h.l)
M
(\
\ (h.l)
0 Ghi chii : Thuc te ngitai ta con thuc hien tinh khoang each til diim den mot diiang thang nhu sau, theo 2 phuang phdp nUa :
• PP2 : Tim mat phang,(a) qua M va vuong goc vdri (A) tai H => JMH = d[ M ; (A)]| (xem h.2) • PP3 : Tim each ghep (A) la di/orng thuf (3 ) nfim trong (a) va |d[ M; (A)] = MH | la do dai difcfng xien (T)' (xem h.3)
•k PP4 : Thinh thoang ngUcfi ta con tim d[ M ; (A)] bSng cong thuTc tinh dien tich hinh ph^ng (phuang phap dien tich).
79