🔙 Quay lại trang tải sách pdf ebook Giáo trình Nucleic Acid
Ebooks
Nhóm Zalo
BỘ GIÁO DỤC VÀ ĐÀO TẠO
ĐẠI HỌC HUẾ
HOÀNG TRỌNG PHÁN (Chủ biên) - ĐỖ QUÝ HAI
Gi¸o tr×nh
NUCLEIC ACID
Huế - 2008
3
Lời nói đầu
Kể từ lúc Oswald T. Avery, MacLeod và McCarty (Đại học Standford, USA; 1944) chứng minh DNA là vật chất mang thông tin di truyền và đặc biệt là, từ ngày James Watson và Francis Crick khám phá ra cấu trúc phân tử DNA - 25/4/1953 đến nay, Hoá sinh học và Sinh học phân tử đã phát triển với một tốc độ hết sức nhanh chóng. Những thành tựu mới nối tiếp nhau ra đời, đáng kể là sự hoàn thành việc giải mã di truyền bởi hai nhóm nghiên cứu của Marshall Nirenberg và Gobind Khorana vào tháng 6 năm 1966 và sự ra đời của Kỹ thuật Di truyền vào giữa thập niên 1970 là hai sự kiện nổi bật nhất kể từ sau khi sinh học phân tử ra đời. Kế đó, sự thành công của Dự án Bộ gene Người (Human Genome Project = HGP) vào tháng 4 năm 2003 được xem là một trong những kỳ công thám hiểm vĩ đại nhất của loài người. Lần đầu tiên con người có thể đọc được một cách đầy đủ toàn bộ trình tự 3.164.700.000 cặp base trong bộ gene của mình. Tất cả những sự kiện nổi bật này minh chứng một điều rằng: Sự phát triển cùng với những thành tựu đạt được của lĩnh vực nghiên cứu nucleic acid và sinh học phân tử nói chung trong thời gian qua quả là vô cùng to lớn!
Để góp phần đổi mới nội dung giáo trình Nucleic Acid theo hướng cập nhật kiến thức cũng như phương pháp dạy và học bộ môn, chúng tôi đã tham cứu nhiều tài liệu khác nhau và cố gắng biên soạn giáo trình trên tinh thần ấy. Chúng tôi hy vọng rằng giáo trình này sẽ đáp ứng được phần nào nhu cầu học tập của sinh viên trong bối cảnh đổi mới giáo dục hiện nay.
Nội dung giáo trình gồm sáu chương bao quát các kiến thức cơ bản về nucleic acid. Chương 1 đề cập đến Lịch sử và phương pháp nghiên cứu nucleic acid; các chương 2, 3 và 4 tập trung chủ yếu vào các khía cạnh cấu trúc của các nucleotide, polynucleotide, các phân tử DNA và RNA; còn các chương 5 và 6 đi sâu vào cơ chế của các quá trình sinh tổng hợp nucleotide, DNA, RNA và protein. Mặt khác, để đảm bảo tính toàn diện và tính hệ thống của giáo trình (trong khuôn khổ đã định), các kiến thức đại cương về cơ sở phân tử của đột biến và tái tổ hợp DNA cũng được trình bày ở cuối chương 5 như là mặt biến đổi thiết yếu, mang tính biện chứng của cấu trúc di truyền này. Cuối mỗi chương đều có các phần Câu hỏi và Bài tập và Tài liệu tham khảo để bạn đọc tiện ôn tập và tra cứu.
Giáo trình Nucleic Acid này được ra đời trong khuôn khổ của Dự án Giáo dục Đại học Huế. Vì vậy một số kiến thức nâng cao như phần Công
4
nghệ DNA tái tổ hợp - một lĩnh vực ứng dụng mới mẻ và rộng lớn của sinh học phân tử - theo quy định sẽ được đề cập trong một giáo trình riêng - Công nghệ DNA tái tổ hợp - mà không đi sâu với tư cách là một chủ đề hay một chương riêng. Bên cạnh đó, một số thuật ngữ khoa học được thống nhất sử dụng bằng tiếng Anh để giúp người học dễ dàng hơn trong việc tiếp cận với thông tin qua sách báo nước ngoài hoặc internet.
Giáo trình này do ThS. Hoàng Trọng Phán và PGS.TS. Đỗ Quý Hai - hiện đang công tác tại Khoa Sinh học các trường Đại học Sư phạm và Đại học Khoa học thuộc Đại học Huế - biên soạn, với sự phân công như sau: ThS. Hoàng Trọng Phán chủ biên và biên soạn các chương 3, 4, 5, 6 và một phần của chương 2; và
PGS.TS. Đỗ Quý Hai biên soạn chương 1 và một phần của chương 2.
Để giáo trình này kịp thời ra mắt bạn đọc, chúng tôi xin trân trọng cảm ơn Dự án Giáo dục Đại học Huế đã tài trợ cho việc biên soạn và xuất bản giáo trình trong khuôn khổ của Dự án Giáo dục Đại học mức B. Chúng tôi xin bày tỏ lòng cảm ơn đặc biệt đến GS. TSKH. Lê Doãn Diên, Chủ tịch Hội Hoá sinh Việt Nam, Giám đốc Trung tâm INCEDA đã dày công đọc bản thảo và cho nhiều ý kiến quý báu kể từ khi đề cương giáo trình bắt đầu được hình thành.
Do khả năng còn hạn chế, chắc chắn giáo trình còn nhiều thiếu sót. Chúng tôi rất mong nhận được sự phê bình và chỉ bảo của các đồng nghiệp và bạn đọc để giáo trình được hoàn chỉnh hơn trong lần in sau.
Huế, ngày 15 tháng 10 năm 2005 Các tác giả,
HOÀNG TRỌNG PHÁN - ĐỖ QUÝ HAI
5
Mục lục
Lời nói đầu 3 Chương 1: Lịch sử và Phương pháp Nghiên cứu Nucleic Acid
Đỗ Quý Hai 7
I. Lịch sử nghiên cứu 7 II. Các phương pháp nghiên cứu 11 1. Các phương pháp chung 12 2. Các phương pháp tách chiết nucleic acid 14 3. Các phương pháp phân tích định tính và định lượng thô
nucleic acid 17 4. Các phương pháp xác định trình tự nucleic acid 19 Chương 2: Cấu trúc của các Nucleotide và
Polynucleotide
Hoàng Trọng Phán - Đỗ Quý Hai 21
I. Thành phần hoá học của các nucleotide 21 1. Base nitơ 21 2. Đường pentose 24 3. Phosphoric acid 25 II. Cấu trúc của các nucleotide 25 1. Cấu trúc của các nucleoside 25 2. Cấu trúc của các nucleotide 26 3. Cấu trúc của các di- và triphosphate nucleoside 27 III. Cấu trúc của các chuỗi polynucleotide 29 Chương 3: Cấu trúc và Đặc điểm của DNA
Hoàng Trọng Phán 33
I. Thành phần hoá học của DNA 33 II. Cấu trúc chuỗi xoắn kép DNA 34 1. Mô hình Watson-Crick 35 2. Các dạng DNA xoắn phải và xoắn trái 38 3. Các DNA mạch vòng sợi kép và sợi đơn 40 III. Định khu, hàm lượng và kích thước của DNA 43 IV. Đặc tính hoá lý của DNA 49 V. Chức năng của DNA 56
6
Chương 4: Cấu trúc và Chức năng của các RNA Hoàng Trọng Phán 61
I. Cấu trúc và chức năng của các mRNA 63 II. Cấu trúc và chức năng của các tRNA 69 III. Cấu trúc và chức năng của các rRNA 71 Chương 5: Sinh tổng hợp Nucleotide và DNA
Hoàng Trọng Phán 75
I. Sinh tổng hợp các nucleotide 75 1. Sinh tổng hợp các nucleotide purine 75 2. Sinh tổng hợp các nucleotide pyrimidine 77 II. Sinh tổng hợp DNA (Tái bản) 79 1. Những nguyên tắc và đặc điểm chung của tái bản DNA 80 2. Các enzyme tham gia tái bản DNA 82 3. Cơ chế tái bản DNA 84 4. Tái bản của các bộ gene RNA 91 5. Ứng dụng của enzyme tái bản trong kỹ thuật sinh học phân tử 93 III. Cơ sở phân tử của đột biến và tái tổ hợp DNA 97 1. Cơ sở phân tử của đột biến 97 2. Sửa chữa DNA 105 3. Tái tổ hợp và đại cương về công nghệ DNA tái tổ hợp 107 Chương 6: Sinh tổng hợp RNA và Protein
Hoàng Trọng Phán 117
I. Sinh tổng hợp RNA (Phiên mã ) 117 1. Đặc điểm chung của phiên mã 117 2. Các RNA polymerase ở prokaryote và eukaryote 118 3. Cơ chế phiên mã ở prokaryote và eukaryote 119 II. Cấu trúc và chức năng của protein 128 1. Cấu trúc của protein 128 2. Chức năng của protein 130 III. Mã di truyền 132 IV. Cơ chế của quá trình sinh tổng hợp protein (Dịch mã) 136 1. Hoạt hoá amino acid 136 2. Mở đầu, kéo dài và kết thúc sự tổng hợp chuỗi polypeptide 137 V. Sự điều hoà sinh tổng hợp protein ở vi khuẩn 141 1. Mô hình operon ở E. coli 141 2. Operon lactose và cơ chế điều hoà cảm ứng - âm tính 143 3. Operon tryptophan và cơ chế điều hoà ức chế - âm tính 145
7
Chương 1
Lịch sử và Phương pháp Nghiên cứu Nucleic Acid
I. Lịch sử nghiên cứu
Nucleic acid là những hợp chất cao phân tử đóng vai trò hết sức quan trọng trong hoạt động sống của mọi cơ thể sinh vật. Chúng tham gia vào các quá trình cơ bản của sự sống như sinh tổng hợp protein, sinh trưởng, sinh sản và di truyền.
Trong một thời gian dài các nhà hóa học và các nhà nghiên cứu về sinh lý dinh dưỡng đã coi protein, lipid và carbonhydrate là ba chất quan trọng nhất tạo nên cơ thể sống. Quan điểm cho rằng nucleic acid là những cấu tử trơ của nhân và tế bào chất đã mãi mãi lãng quên từ khi chất thứ tư này – nucleic acid được chứng minh là chất quan trọng hơn so với các chất trước đó.
Năm 1869, lần đầu tiên nhà hóa sinh học trẻ tuổi người Thụy Sĩ Friedrich Miescher (1844 -1895) đã phát hiện nucleic acid trong nhân tế bào. Ông đã đặt tên là nuclein vì nhận thấy nó tồn tại ở trong nhân tế bào (nucleus).
Đối tượng nghiên cứu của Miescher là những bạch cầu (lymphocytes). Khi dùng acid kết tủa dịch chiết xuất từ nhân của tế bào mủ lấy từ bông băng bỏ đi (bằng cách dùng enzyme phân hủy protein của dịch dạ dày là pepsin để tiêu hóa các phần khác giàu protein của tế bào) ông đã vô cùng ngạc nhiên nhận thấy rằng, nhân tế bào chứa một chất không phải mỡ, không phải carbonhydrate, cũng không phải protein. Nó cũng không giống một chất sống nào đã biết và chứa phosphor và nitơ, hòa tan thì cho tính acid. Từ “nucleic acid” là do Altman đề nghị năm 1889 (ông đã phát hiện ra rằng đối tượng thuận tiện tốt nhất để chiết rút chất nuclein là những đầu tinh trùng của cá hồi). Và thực chất mỗi đầu tinh trùng của cá hồi hoàn toàn tương ứng với một nhân tế bào. Để
điều chế chế phẩm nucleic acid, Miescher đã hòa tan phần đầu của tinh trùng (tế bào sinh dục đực) trong dung dịch muối nồng độ cao, sau đó bằng cách thêm nước vào đã gây ra kết tủa nucleic acid ở dạng sợi. Cần phải giữ chế phẩm lạnh do đó trong các ngày đông
tháng giá của mùa đông, ông đã làm việc trong phòng không sưởi. Thực tế, lịch sử nghiên cứu hóa học của nucleic acid gắn liền
8
với tên tuổi của Felix Hoppe - Seiler (1825-1895), nhà sinh lý học và hoá học rất nổi tiếng người Đức vì chính ở phòng thí nghiệm của ông ở Tübingen. Miescher đã làm việc với danh nghĩa là người học trò và cộng tác viên khoa học trẻ. Mặc dù Miescher là một cộng tác viên vô cùng cẩn thận và đầy triển vọng song Hoppe - Seiler vẫn thấy cần thiết phải đích thân lặp lại thí nghiệm xem có đúng là một chất mới hay không. Kết quả thực nghiệm không những khẳng định thành tựu của Miescher mà còn thu được thêm nhiều dẫn liệu mới rất đặc trưng. Hoppe - Seiler còn phát hiện trong nhân tế bào nấm men cũng có chất nuclein giống như ở tế bào bạch cầu.
Người kế tục phát triển công trình của Miescher là nhà hóa sinh học (hóa học hữu cơ) người Đức Albrecht Kossel (1853 - 1927). Năm 1882, ông đã phân tích nucleic acid ra những phần nhỏ chứa acid phosphoric, đường và base chứa nitơ (Kossel đã tách được hai pyrimidine và đặt tên là cytosine và thymine, cũng như hai purine với tên adenine và guanine). Do công trình này ông đã đạt giải Nobel về y và sinh lý học vào năm 1910. Một pyrimidine khác là uracil cũng đã được phát hiện sau này.
Trong những năm đầu của thế kỷ XX (1900 - 1932), nhà hóa sinh học người Mỹ gốc Nga Phoebus Aaron Theodore Levene (1869 - 1940) đã xác định được đơn vị cấu tạo của nucleic acid là các nucleotide (hay mononucleotide) và phân biệt được hai loại nucleic acid: deoxyribonucleic acid (DNA) và ribonucleic acid (RNA).
Như vậy, cho đến năm 30 của thế kỷ XX này, người ta đã biết được thành phần của các nucleic acid.
Levene đã đoán trước 4 nucleotide khác nhau liên quan đến RNA là adenylic acid (chứa adenine), guanilic acid (chứa guanine), cytidilic acid (chứa cytosine) và uridic acid (chứa uracil). Ông cũng giả thiết 4 nucleotide tiếp theo liên quan đến DNA là deoxyadenilic acid, deoxyguanilic acid, deoxythymidilic acid (chứa thymidine) và deoxycytidilic acid (chứa cytosine).
Do các giả thiết này của Levene tỏ ra phù hợp với hiểu biết của hóa học cho nên chúng sớm được các nhà hóa học chấp nhận. Nhưng cho đến thời kỳ đầu những năm 1950, chúng vẫn chưa được chứng minh rõ ràng khi nhà hóa sinh học người Anh Alexander Robertus Todd (1907-1997) chưa tổng hợp được các nucleotide phù hợp một cách chính xác với các công thức của Levene. Todd đã xác nhận được rằng các chất này thực tế giống
9
các hợp chất đã thu nhận được từ nucleic acid. Với công trình này, Todd đã được trao giải thưởng Nobel về hóa học năm 1957. Trong những năm 1949 - 1953 nhà sinh học người Mỹ gốc Áo Erwin Chargaff (1905 - 2002) khi phân tích DNA đã phát hiện sự cân bằng của các base trong DNA: số nhóm purine bằng số nhóm pyrimidine (purine/pyrimidine = 1), số nhóm adenine bằng số nhóm thymine (adenine/thymine = 1), số nhóm guanine bằng số nhóm cytosine (guanine/cytosine = 1). Về sau này người ta đã đặt quy tắc mang tên ông về tổng lượng các loại nucleotide cấu tạo nên các DNA.
Trong những năm đầu thập niên 1950, hai nhà vật lý học người Anh, Maurice Hugh Frederick Wilkins (1916 - 2004) cùng với Rosalind Franklin (1920 - 1958) bắt đầu tiến hành các nghiên cứu đầu tiên về cấu trúc DNA. Wilkins là con trai của một bác sĩ người New Zealand chuyên học vật lý và vào thời kỳ đầu cuộc Chiến tranh Thế giới thứ hai, ông làm việc cho sự phát triển bom nguyên tử. Nhưng sau cuộc Thế chiến này, ông dùng tất cả sức lực của mình cho công việc nghiên cứu DNA và đã trở thành một trong những nhà bác học tiên phong trong lĩnh vực này nên được coi là nhà lý sinh học. Wilkins và Franklin đã áp dụng phương pháp nhiễu xạ Rơnghen (X-ray diffraction) vào việc nghiên cứu cấu trúc tinh thể của DNA (lấy từ tuyến ức bê, thymus). Với những bức ảnh chụp cấu trúc tinh thể DNA có dạng chữ thập, hai tác giả này gợi ý rằng DNA có thể gồm hai hoặc ba mạch đơn bện xoắn với nhau.
Năm 1953, từ các nghiên cứu của mình kết hợp với các kết quả nghiên cứu trước đó của Chargaff và Wilkins, hai nhà khoa học ở trường Đại học Tổng hợp Cambridge là Francis Harry Compton Crick (England; 1916-2004) và James Dewey Watson (USA; 1928-2003) đã xây dựng thành công mô hình chuỗi xoắn kép của phân tử DNA. Với công trình này, Watson và Crick đã được trao giải thưởng Nobel về y học và sinh lý học năm 1962. Từ
đó Crick đã xây dựng một chuỗi xoắn kép DNA bằng đồng trong vườn nhà ông ở trung tâm Cambridge, sau đó đã viết: “Người ta hỏi tôi là khi nào thì sẽ mạ vàng”.
Cùng với việc nghiên cứu cấu trúc DNA, các nhà khoa học cũng đã nỗ lực tìm hiểu vai trò và các chức năng sinh học của nó. Vào năm 1944, nghĩa là sau 75 năm kể từ khi phát hiện DNA trong nhân tế bào năm 1869, nhà vi khuẩn học người Mỹ Oswwald Theodore Avery (1877 - 1955) đã chứng minh DNA là chất liệu di
10
truyền khi bổ sung DNA chiết xuất từ chủng độc (chủng không độc của phế cầu khuẩn Diplococcus pneumoniae biến thành chủng độc gây viêm phổi và làm chết chuột bắt nguồn từ thí nghiệm biến nạp của F. Grifith năm 1928) vào môi trường nuôi cấy và kết hợp với việc xử lý bằng DNase. Điều đó chứng tỏ DNA quyết định tính chất di truyền của phế cầu khuẩn.
Năm 1952, Alfred Day Hershey (1908 - 1997) và Martha Chase (1927 - 2003) cho biết, bằng đồng vị phóng xạ có thể theo dõi sự di chuyển của protein và DNA của virus (cơ sở là DNA chứa phosphor, protein chứa lưu huỳnh mà không chứa phosphor; vì vậy DNA virus có thể được đánh dấu bằng đồng vị phóng xạ phosphor, còn protein virus được đánh dấu bằng đồng vị phóng xạ lưu huỳnh). Khi đánh dấu một số hạt virus ở phần protein và một số hạt virus ở phần DNA rồi đưa vào môi trường nuôi cấy vi khuẩn chủ E. coli thì thấy DNA virus nhanh chóng thâm nhập vào tế bào chủ, còn phần protein thì không. Thí nghiệm cũng đã chứng minh tầm quan trọng về mặt di truyền của DNA.
Năm 1955, nhà hóa sinh học Mỹ Fraenkel-Konrad (1910 - ) đã chia virus ra làm hai phần và sau đó nối được hai phần đó lại, phần protein không gây nhiễm (không chui vào tế bào vật chủ) còn phần DNA thì gây nhiễm. Thí nghiệm của Krauss trên hồng cầu người chứng minh sự liên quan giữa cấu trúc hóa học của protein với vai trò di truyền của DNA (khi đưa DNA chiết xuất từ hồng cầu non của người lành vào tủy xương bệnh nhân thiếu máu hình lưõi liềm (có HbS không bình thường) thì thấy hemoglobin bình thường được tổng hợp. Điều đó chứng tỏ DNA quyết định cấu trúc đặc hiệu của protein.
Các thí nghiệm sau đó của các nhà khoa học đã chú trọng vào việc tổng hợp DNA.
Năm 1956 Severo Ochoa (1905 - 1993) và Arthur Kornberg (1918 - ) - hai nhà khoa học người Mỹ đã tổng hợp DNA in vitro bằng cách trộn enzyme DNA polymerase I được chiết xuất từ E. coli với các dNTP, DNA khuôn (DNA tự nhiên) và Mg++, DNA thu được không khác DNA tự nhiên. Hai nhà khoa học này đã được
nhận giải thưởng Nobel về y học và sinh lý học vào năm 1959. Năm năm sau khi công bố công trình cấu trúc xoắn kép của DNA vào năm 1958, Matthew Stanley Meselson (1930 - ) và Franklin William Stahl (1928 - ) đã chứng minh bằng thực nghiệm dự đoán trên là hoàn toàn có cơ sở. Bằng cách nuôi vi khuẩn E.
11
coli ở môi trường chứa nitơ nặng 15N sau đó bằng 14N bình thường rồi theo dõi qua các thế hệ, xem sự thay đổi tỷ trọng của DNA qua máy ly tâm siêu tốc (siêu ly tâm); hai nhà khoa học đã xác định được cơ chế tái sinh bán bảo tồn của DNA.
Về việc nghiên cứu RNA, cho đến cuối những năm 30 của thế kỷ XX, các nhà khoa học vẫn nghĩ rằng DNA là đặc trưng của các tế bào động vật, còn RNA chỉ có thể gặp được ở trong nấm men và các tế bào thực vật. Nguồn quan trọng nhất của DNA lúc này là tuyến ức (thymus), còn đối với RNA là nấm men.
Các nghiên cứu chính xác hơn sau này đã cho thấy cả hai loại nucleic acid đều có mặt trong tất cả các tế bào động vật và thực vật.
Năm 1939, các nhà nghiên cứu Torbjorn Oskar Caspersson (Thụy điển; 1910 - 1997) và Jean Brachet (Bỉ; 1909 - 1998) đã chứng minh sự tổng hợp mạnh mẽ protein trong bào tương cùng xảy ra với sự tổng hợp manh mẽ RNA.
Năm 1956, S. Ochoa (nhà hóa sinh học người Mỹ) đã dùng enzyme RNA polymerase được chiết xuất từ vi khuẩn Azobacter vineladni để tổng hợp RNA in vitro.
Năm 1956, George Emile Palade (1912 - ) đã chứng minh microsome có chứa những hạt có nhiều RNA gọi là thể ribo tức là ribosome (55% RNA, còn lại là protein).
Năm 1961, Francois Jacob (1920 - ) và Jacques Lucien Monod (1910 - 1976) nêu vấn đề có một loại RNA khác có đặc điểm chuyển hóa nhanh chóng và có cấu tạo tương tự DNA. Đó là mRNA, là chất trung gian chuyển thông tin từ DNA đến chuỗi polypeptide được tổng hợp.
Trước đó vào năm 1958, M. B. Hoagland (nhà hóa sinh học người Mỹ) đã nghiên cứu vấn đề đưa amino acid vào ribosome. Ông đã xác định là trước khi tham gia tổng hợp protein, amino acid được kết hợp với RNA vận chuyển (tRNA) để vận chuyển amino acid từ bào tương vào ribosome.
Với những phương pháp thí nghiệm khác nhau các phòng thí nghiệm của Marshall Warren Nirenberg (1927 - ), Har Gobind Khorana (1922 - ) và Ochoa đã xác định được các bộ ba mật mã của toàn bộ 20 amino acid vào những năm 1961 - 1965.
Do vai trò quan trọng của nucleic acid trong hoạt động sống của cơ thể sinh vật (tham gia vào các quá trình cơ bản của sự sống
12
như sinh tổng hợp protein, sinh trưởng, sinh sản và di truyền), cho nên việc nghiên cứu nucleic acid ngày càng được chú trọng. Từ những năm 70 của thế kỷ XX trở lại đây, nhất là trong 10 năm cuối của thế kỷ và những năm đầu của thế kỷ XXI này, hiểu biết về nucleic acid ngày càng được mở rộng.
Nhờ những thành tựu của sinh học phân tử, một lĩnh vực khoa học mới đã hình thành và phát triển mạnh mẽ, đó là công nghệ gen, một trọng tâm được đầu tư nghiên cứu hàng đầu của công nghệ sinh học.
II. Các phương pháp nghiên cứu
Cũng như sự nghiên cứu các đại phân tử sinh học khác, có nhiều phương pháp và kỹ thuật được sử dụng trong việc nghiên cứu nucleic acid.
Tuy nucleic acid có cấu trúc phức tạp và hoạt động rất chặt chẽ, nhưng nhờ những thành tựu mới về kỹ thuật, đã ra đời nhiều phương tiện và phương pháp nghiên cứu hiện đại, đảm bảo độ chính xác cao, cho phép khám phá thêm nhiều điều quan trọng ở nucleic acid.
1. Các phương pháp chung
1.1. Phương pháp nhiễu xạ Rơnghen
Phương pháp này dựa trên sự tán xạ của tia X (tia Rơnghen) qua cấu trúc tinh thể của chất cần phân tích. Bằng cách đó và pha của tia X bị nhiễu xạ kết hợp với việc xử lý dữ liệu trên máy tính, người ta có thể xác định được chính xác vị trí của một nguyên tử
bất kỳ so với các nguyên tử còn lại trong một đại phân tử. Nhờ vậy, người ta có thể thu nhận được một hình ảnh "tĩnh" về cấu trúc phân tử nằm ở trạng thái tinh thể. Tuy nhiên, cần chú ý rằng các chất nằm trong tế bào không bao giờ tồn tại ở trạng thái tinh thể, mà chúng thường nằm ở trạng thái hoà tan hoặc kết hợp với các cấu trúc khác của tế bào. Bởi vậy, người ta thường sử dụng thêm phương pháp phân tích cộng hưởng từ hạt nhân để thu được cấu trúc phân tử của chất cần phân tích ở trạng thái hoạt động sinh học.
Nhờ kết quả nhiễu xạ Rơnghen trên các sợi nucleic acid, người ta đã xác định được cấu trúc không gian của phân tử nucleic acid (chủ yếu là của DNA).
1.2. Phương pháp điện di
13
Nguyên tắc của phương pháp này là dựa vào tính phân cực của phân tử và khả năng di chuyển về một hướng xác định khi chịu tác động của một điện trường. Trong các dung dịch kiềm và trung tính, các đại phân tử nucleic acid tích điện âm đồng đều trên khắp bề mặt nên trong điện trường, chúng sẽ di chuyển về cực dương của điện trường.
Bằng phương pháp điện di, chúng ta có thể thu được nucleic acid dạng tinh khiết từ dịch chiết nghiên cứu. Phương pháp này cũng được dùng để tách riêng các nucleic acid DNA, RNA, cũng như các loại RNA riêng biệt (mRNA, rRNA, tRNA).
1.3. Phương pháp sắc ký
Phương pháp sắc ký dựa vào khả năng phân bố của các chất chạy sắc ký khi đưa vào dung môi kết hợp với khả năng hấp phụ của vật liệu sắc ký. Các chất khác nhau có khả năng hòa tan vào dung môi khác nhau và được vật liệu sắc ký hấp phụ với lực khác nhau cho nên tốc độ di chuyển của chúng trên sắc ký đồ là khác nhau. Do đó các chất này sẽ được tách ra trong quá trình chạy sắc ký.
Phương pháp này được dùng để tách chiết và tinh chế nucleic acid. Có nhiều phương pháp sắc ký: sắc ký giấy, sắc ký cột, sắc ký trao đổi ion, sắc ký lớp mỏng, sắc ký khí.
1.4. Phương pháp quang phổ
Nguyên tắc của phương pháp này là dựa vào sự hấp thụ mạnh ánh sáng của một chất ở một bước sóng xác định. Nucleic acid hấp thụ mạnh ánh sáng tử ngoại ở bước sóng 260 nm do sự có mặt của base purine và pyrimidine. Giá trị mật độ quang ở bước sóng 260nm (OD260nm) của các mẫu cho phép xác định nồng độ nucleic acid trong mẫu. Người ta cũng xác định được độ tinh khiết của chế
phẩm nucleic acid khi xác định độ hấp thụ ánh sáng ở 280 và 260 nm (độ hấp thụ cực đại của protein là ở 280 nm).
1.5. Phương pháp đồng vị phóng xạ
Nguyên tắc của phương pháp này là các chất đồng vị phóng xạ được gắn lên chất nghiên cứu và dùng kỹ thuật phóng xạ tự ghi để theo dõi quá trình biến đổi của các chất khi đưa chúng vào cơ thể hoặc môi trường cần nghiên cứu. Nhờ vậy có thể xác định được cơ chế tham gia quá trình biến đổi của chất cần nghiên cứu. Cũng có
thể dùng máy đo phóng xạ để định lượng chất cần nghiên cứu.
14
Phương pháp đồng vị phóng xạ được dùng để nghiên cứu cơ chế tổng hợp nucleic acid. Ngoài ra việc xác định thành phần cấu trúc cũng như định lượng nucleic acid cũng được tiến hành bằng phương pháp này. Các đồng vị hay dùng cho các nghiên cứu này là: 3H, 14C, 32P, 15N.
1.6. Phương pháp hóa học
Dùng phương pháp thủy phân thích hợp bằng acid hay kiềm, người ta có thể thu nhận được các phần khác nhau của nucleic acid. Bằng cách kết hợp với các phương pháp khác như sắc ký hay điện di, các thành phần được tách riêng để nghiên cứu cấu trúc, thành phần hóa học và tính chất của chúng. Người ta cũng có thể dùng phương pháp hóa học để định tính nucleic acid trong tế
bào nhờ những phản ứng hóa học đặc trưng.
1.7. Phương pháp dùng hệ thống vô bào
Người ta có thể sử dụng đối tượng nghiên cứu là cơ thể toàn vẹn, lát cắt mô, tế bào, nhưng một phương pháp nghiên cứu rất có hiệu quả là phương pháp dùng các hệ thống vô bào (không dùng tế bào nguyên vẹn).
Nghiền vỡ tế bào rồi dùng các phương pháp ly tâm để tách các thành phần khác nhau của tế bào. Dựa trên nhu cầu nghiên cứu, người ta có thể thêm vào hệ thống vô bào các chất khác nhau. Nhờ hệ thống vô bào này chúng ta có thể nghiên cứu quá trình sinh tổng hợp protein, vai trò của các nucleic acid trong quá trình này, cũng như bản thân quá trình tổng hợp các nucleic acid. P. C. Zamecnik và cộng sự lần đầu tiên phát triển các hệ thống vô bào để nghiên cứu sinh tổng hợp protein, đã xác định các hạt ribonucleoprotein (ribosome) là nơi sinh tổng hợp protein và đã phát hiện ra tRNA.
2. Các phương pháp tách chiết nucleic acid
Để đảm bảo cho các nghiên cứu tiếp theo, nucleic acid cần được tách với một lượng đủ lớn và đủ tinh sạch. Chính vì vậy điều cần chú ý trước hết là phải thu nhận các nucleic acid ở trạng thái nguyên vẹn, không bị phân hủy bởi các tác nhân cơ học hay hóa học. Việc nghiền lắc mạnh không đúng quy trình cũng dễ làm tổn thương đến phân tử nucleic acid (dễ bị gãy). Các enzyme nội bào bị phá vỡ cũng có thể thủy phân nucleic acid.
Để ức chế hoạt động của các enzyme nội bào (deoxyribonuclease
15
= DNase, và ribonuclease = RNase) cần tách chiết nucleic acid ở nhiệt độ thấp, hoặc sử dụng các chất ức chế sự hoạt động của các enzyme này.
2.1. Phương pháp tách chiết DNA
DNA là phân tử có kích thước lớn nên cần tránh các tác nhân có học hoặc hóa học mạnh, tránh làm đứt gãy. Có nhiều phương pháp khác nhau được sử dụng để tách chiết DNA, như: ly tâm gradient tỷ trọng ClCs, cột sắc ký trao đổi anion (Kit QIAGEN), v.v. Dưới đây chỉ là một trong các phương pháp tách chiết DNA đó.
Phương pháp tách chiết này gồm 3 bước cơ bản sau: - Bước 1: Phá vỡ màng tế bào và màng nhân (ở tế bào eukaryote) bằng hỗn hợp chất tẩy (SDS - sodium dodecyl sulfate, sarcosyl) và proteinase. Các DNA sẽ được giải phóng ra môi trường. Các protein liên kết với DNA cũng tự bị phân hủy. - Bước 2: Loại bỏ thành phần không mong muốn trong mẫu mà chủ yếu là protein bằng dung dịch: phenol chloroform. Dung dịch này làm biến tính protein và không hòa tan nucleic acid. Sau khi ly tâm loại protein (nằm giữa pha nước và pha phenol: chloroform) sẽ thu được nucleic acid (ở pha nước).
- Bước 3: Kết tủa nucleic acid. Mục đích là thu nhận nucleic acid dưới dạng cô đặc và bảo vệ chúng khỏi sự phân hủy của các enzyme cũng như có thể hòa tan trở lại theo nồng độ mong muốn. + Dùng etanol nồng độ cao (2,5 dung tích ethanol/1 dung tích mẫu) trong môi trường có lực ion cao (nồng độ muối cao), ở nhiệt độ thấp. Hầu như toàn bộ nucleic acid đều kết tủa trong điều kiện này.
+ Dùng isopropanol (thể tích dung môi: thể tích mẫu là 1:1), không có sự hiện diện của muối. Các DNA trọng lượng phân tử thấp không bị kết tủa, do đó có thể loại chúng ra khỏi dịch chiết bằng cách này.
Tủa thu được bằng 2 cách trên được thu nhận lại bằng cách ly tâm. Sau đó được rửa lại bằng ethanol 70% để loại bỏ các muối và các dấu vết isopropanol.
Và cuối cùng là, tiến hành xử lý bằng RNase để loại bỏ RNA. 2.2. Phương pháp tách chiết RNA toàn phần và mRNA Các loại RNA đềulà các phân tử không bền, dễ bị phân hủy bởi
16
các enzyme ribonuclease (RNase). Hoạt tính của các enzyme này rất cao và bền vững với các tác nhân thường dùng để bất hoạt enzyme (như xử lý 900C trong 1h không làm mất hoạt tính nó). RNase lại có mặt khắp nơi (ví dụ trên đầu ngón tay của người thao tác...). Chính vì vậy, cần phải có nhiều biện pháp thận trọng để tránh các tạp nhiễm bởi các RNase từ môi trường: thao tác trong điều kiện vô trùng, mọi dụng cụ hóa chất đều được khử trùng bằng nhiệt hay được xử lý với DEPC hầu tránh mọi tiếp xúc với dụng cụ bằng tay trần.
- Việc tách chiết RNA toàn phần cũng gồm 3 bước cơ bản như đối với DNA: (Lưu ý rằng, đây cũng chỉ là một trong các phương pháp được sử dụng mà thôi. Hiện nay phương pháp được sử dụng phổ biến nhất để chiết tách RNA là Tri201.)
+ Nghiền tế bào mô trong dung dịch có một một chất tẩy mạnh (SDS, sarcosyl) ở nồng độ cao, một tác nhân gây biến tính protein mạnh (guamidium thiocyanate), một chất khử (2 - mercaptoethanol). Các chất này có tác dụng ức chế hoạt động của các RNase nội bào và tách các protein liên kết khỏi phân tử RNA.
+ Loại protein bằng xử lý phenol: chloroform và ly tâm.
+ RNA được kết tủa bằng ethanol và thu lại bằng ly tâm. Dưới dạng kết tủa trong etanol hoặc đông lạnh ở -700C trong nước có chứa chất ức chế RNase là R - nasine, RNA có thể được bảo quản trên một năm. Và, cuối cùng là bước tách RNA khỏi DNA.
- Tách chiết mRNA (ở các tế bào nhân chuẩn)
Khoảng 90-99% tổng số RNA tế bào là rRNA (80 - 85%), tRNA(15 - 20%), snRNA (<1%). Chúng có kích thước và trình tự xác định và có thể được tách riêng bằng điện di, ly tâm.... mRNA chiếm khoảng 1 - 5% tổng số RNA tế bào. Kích thước và trình tự của loại này vô cùng đa dạng. Tuy vậy, chúng có một đặc điểm chung là có cấu trúc đuôi polyA (có thể lên đến 100A). Người ta có thể tách mRNA ra khỏi mẫu bằng cách dựa vào cấu trúc trên và đặc tính liên kết bổ sung A-T của nucleic acid, sử dụng sắc ký ái lực trên cột oligodT - cellulose. Các bộ mẫu thử (các kit) được xuất hiện trên thương trường hiện nay sử dụng các viên bi từ có mang oligodT trên bề mặt là dựa vào nguyên tắc đã nêu trên. Rằng liên kết bỏ sung với oligodT, sau khi các mRNA bám lên bề mặt các viên bi từ, chúng sẽ được thu nhận lại qua ly tâm hoặc sử dụng nam châm và mRNA sẽ được tách khỏi các viên bi và giữ lại. Bằng cách này có thể thu nhận mRNA từ những mẫu có khối lượng rất
17
nhỏ.
Sau khi tách chiết các nucleic acid có thể được tinh sạch bằng các phương pháp siêu ly tâm, sắc ký hay điện di.
2.3. Phương pháp siêu ly tâm
Siêu ly tâm trên một gradient liên tục cesium chloride (CsCl). Khi ly tâm, dung dịch CsCl đậm đặc trong ống ly tâm sẽ tự động hình thành một građient tỷ trọng với tỷ trọng tăng dần từ miệng ống xuống đáy ống. Dưới tác dụng của lực ly tâm, các nucleic acid di chuyển trong ống đến vị trí có tỷ trọng bằng với tỷ trọng của chính chúng sẽ đạt thế cân bằng và ngừng lại, hình thành một lớp cố định trong ống. Sau khi ly tâm, lớp này sẽ được thu nhận lại. Phương pháp này thường được dùng để tinh sạch plasmid và phage.
- Siêu ly tâm trên đệm CsCl (gradient không liên tục): Hỗn hợp nhiều nucleic acid có tỷ trọng biết trước khác nhau được đặt trên một lớp dung dịch CsCl (đệm). Trong quá trình ly tâm chỉ có những phân tử có tỷ trọng cao hơn tỷ trọng lớp đệm mới di chuyển qua được lớp đệm. Ở đây, ống ly tâm bao gồm nhiều lớp đệm có tỷ
trọng tăng dần từ miệng đến đáy ống. Nucleic acid cần tinh sạch sẽ nằm ở mặt phân cách hai lớp đệm. Phương pháp này thường dùng để tinh sạch một lượng lớn phage.
- Siêu ly tâm trên gradient saccharose: Thường dùng để phân tích thô một hỗn hợp có kích thước chênh lệch nhau nhiều kb. Ứng dụng chúng trong chọn lọc các đoạn DNA có kích thước xác định dùng trong việc thiết lập các ngân hàng gen.
2.4. Phương pháp sắc ký
Có thể dùng các phương pháp sắc ký khác nhau để phục vụ cho các mục đích khác nhau trong tách chiết nucleic acid. - Sắc ký ái lực trên polyU - sepharose hay trên oligodT - cellulose để tinh sạch mRNA.
- Sắc ký lọc gel trong phân tách các nucleic acid ra khỏi các nucleic tự do sau quá trình đánh dấu DNA hoặc RNA. - Sắc ký trao đổi ion trên vi cột để thu hồi những lượng rất nhỏ DNA.
- Sắc ký lỏng cao áp (High Performance Liquid Chromatography - HPLC). Phương pháp có độ phân giải cao này được dùng trong tinh sạch các oligonucleotide tổng hợp (độ phân
18
giải một nucleotide), plasmid, phân tách các đoạn DNA.
3. Các phương pháp phân tích định tính và định lượng thô nucleic acid
Muốn định tính và định lượng các nucleic acid, người ta phải tiến hành thu nhận chúng ở dạng sạch. Các phương pháp thường dùng trong định tính và định lượng chúng là phương pháp đo mật độ quang, điện di, siêu ly tâm, sắc ký.
3.1. Phương pháp định lượng bằng quang phổ kế
Phương pháp này cho phép ước lượng tương đối nồng độ nucleic acid có trong mẫu phục vụ yêu cầu nghiên cứu. Nguyên tắc của phương pháp đã được trình bày ở phần trước.
Để kiểm tra độ sạch của dung dịch, người ta đo thêm giá trị OD ở 280 nm (OD280nm).Ở bước sóng này, các protein có mức hấp thụ cao nhất. Ngoài ra, các protein cũng hấp thụ ánh sáng ở bước sóng 260 nm như các nucleic acid và do đó làm sai lệch giá trị thật của nồng độ nucleic acid. Một dung dịch nucleic acid được xem là sạch (không tạp nhiễm protein) khi tỷ số OD260nm/OD280nm đối với DNA là OD260nm/OD280nm ≥ 1,8; còn đối với RNA là OD260nm/OD280nm ≥ 2.
3.2. Phương pháp điện di gel
Cơ sở của phương pháp này đã được trình bày ở phần trước. Hai loại gel được sử dụng trong nghiên cứu nucleic acid là gel polyacrylamide và gel agarose. Việc chọn loại gel cũng như nồng độ các chất tạo thành gel tùy thuộc kích thước trung bình của các đoạn nucleic acid cần phân tách. Mối tương quan giữa nồng độ
agarose và acrylamide cần sử dụng để phân tách các trình tự có kích thước xác định được thể hiện qua bảng 1.1.
3.2.1. Gel polyacrylamide
Thường dùng để tách các đoạn kích thước nhỏ dưới 1000 cặp base. So với gel agarose thì thao tác với gel này phức tạp hơn. Vì vậy, gel này chỉ được dùng cho những mục đích đặc hiệu. Ứng dụng chủ yếu của loại gel này là:
- Tinh sạch các oligonucleotide tổng hợp
- Xác định trình tự DNA
- Tách các đoạn DNA có chiều dài dưới 500 cặp base
19
Gel được đổ giữa hai tấm thủy tinh và điện di thực hiện theo chiều thẳng đứng.
Bảng 1.1 Tương quan giữa nồng độ gel và kích thước các đoạn cần phân tách
% acrylamide
Kích thước các đoạn cần phân tách (cặp base: bp)
4
200 - 800
5
80 - 200
8
40 - 100
11
10 - 50
% agarose
Kích thước các đoạn cần phân tách (kb)
0,6 - 0,8
1 - 20
0,9 - 1,2
0,5 - 7
1,2 - 1,5
0,2 - 5
3.2.2. Gel agarose
Là loại gel thông dụng nhất. Thao tác với loại gel này đơn giản, thường dùng để phân tách những đoạn có kích thước trong khoảng 0,5 - 20kb. Gel được đổ trên một giá thể nằm ngang và điện di được thực hiện theo phương nằm ngang.
Trong gel agarose các nucleic acid sẽ hiện hình dưới tia tử ngoại (UV) nhờ ethidium bromide. Hóa chất này có khả năng gắn xen vào giữa các base của nucleic acid và sẽ phát huỳnh quang dưới tác dụng của tia tử ngoại. Dưới sự chiếu sáng bằng tia tử ngoại (λ = 260 - 360 nm), nucleic acid sẽ hiện hình dưới dạng những vạch màu đỏ cam.
Để ước lượng kích thước các trình tự nucleic acid trong gel agarose người ta sử dụng một yếu tố đánh dấu trọng lượng phân tử (molecular weight marker - MWM). Đó là tập hợp nhiều trình tự DNA có kích thước đã biết (thang DNA - DNA ladder).
Điện di trên gel agarose còn được sử dụng để tinh sạch và thu nhận mẫu. Ở đây, sau khi điện di, các vạch tương ứng với DNA cần tinh sạch được phát hiện và thu nhận lại theo một trong các phương pháp sau:
(i) Cắt phần agarose chứa các vạch DNA, sau đó thu nhận lại DNA bằng cách khuyếch tán từ gel agarose vào một dung dịch đệm thích hợp.
20
(ii) Khoét một “giếng” nhỏ trong agarose ngay dưới vạch DNA. Bơm dung dịch đệm vào đầy “giếng” và điện trường được tái lập. DNA di chuyển vào “giếng” chứa đầy dung dịch đệm và được thu nhận lại.
(iii) Dùng gel agarose đặc biệt như Nusieve hay Seaplaque có điểm nóng chảy rất thấp (650C) cho điện di. Sau điện di, vạch DNA được cắt ra và ủ trong một dung dịch đệm ở nhiệt độ 650C. Khi agarose đã hoàn toàn tan chảy DNA được thu nhận lại sau nhiều công đoạn tách chiết và kết tủa.
4. Các phương pháp xác định trình tự của nucleic acid
Các phương pháp phân tích nucleic acid đã nêu đã cung cấp nhiều thông tin về nucleic acid nhưng chưa cho phép kết luận về bản chất của một đoạn nucleic acid cụ thể. Thông tin về sự tương ứng của nucleic acid với gene gì, có chức năng điều hòa hay mã hóa cho protein nào, chỉ có thể rút ra được từ việc xác định trình tự nucleotide của nucleic acid.
Các phương pháp xác định trình tự nucleic acid nói chung dựa vào hai nguyên tắc cơ bản, được tóm tắt dưới đây (về chi tiết, có thể tham khảo trong: Hồ Huỳnh Thuỳ Dương 1997; Đỗ Quý Hai 2001.):
- Nguyên tắc hóa học (Phương pháp Maxam - Gilbert, 1977): dựa vào các phản ứng hóa học thủy phân đặc hiệu phân tử DNA, tạo thành một tập hợp nhiều phân đoạn có kích thước khác nhau. - Nguyên tắc enzyme học (Phương pháp Sanger (1977) và các phương pháp cải biên): Dựa vào sự tổng hợp mạch bổ sung cho trình tự cần xác định nhờ DNA polymerase. Với việc sử dụng thêm dideoxynucleotide (nhóm 3′-ON được thay bằng H) cùng với các deoxy nucleiotide thông thường, kết quả tổng hợp cũng là sự hình thành một tập hợp nhiều đoạn DNA có kích thước khác nhau.
Ở cả hai trường hợp, các phân đoạn DNA sẽ được phân tách qua điện di trên gel polyacrylamide có khả năng phân tách hai trình tự DNA chỉ chênh nhau một nucleotide. Với việc sử dụng một đoạn nucleotide có đánh dấu đồng vị phóng xạ, kết quả trình tự cần xác định dược đọc trên bản phóng xạ tự ghi từ bản điện di.
Câu hỏi ôn tập
1. Trình bày tóm tắt lịch sử nghiên cứu các nucleic acid.
21
2. Mô tả các phương pháp chung thường dùng trong nghiên cứu nucleic acid.
3. Trình bày nguyên tắc và ứng dụng của các phương pháp tách chiết nucleic acid.
4. Mô tả các phương pháp phân tích định tính và định lượng thô nucleic acid.
5. Sơ lược về các phương pháp xác định trình tự của các nucleic acid.
Tài liệu Tham khảo
Nguyễn Bá Lộc. 2000. Giáo trình Axit nucleic và Sinh tổng hợp protein. NXB Giáo dục.
Đỗ Quý Hai. 2001. Bài giảng Axit Nucleic. Trường ĐHKH, Đại Học Huế.
Phạm Thị Trân Châu và Trần Thị Áng (1992): Hoá sinh học. NXB Giáo dục, Hà Nội.
Hồ Huỳnh Thuỳ Dương. 1997. Sinh học Phân tử. NXB Giáo Dục. Lehninger L. et al. 1993. Principles of Biochemistry. Worth Publishers, New York.
Stryer L. 1981. Biochemistry. W.-H. Freeman and Co., San Francisco.
21
Chương 2
Cấu trúc của các Nucleotide và
Polynucleotide
Việc nghiên cứu cấu trúc của các nucleic acid thực sự diễn ra từ giữa thập niên 1950, sau khi O.T.Avery, MacLeod và McCarty (1944) lần đầu tiên chứng minh: DNA là vật chất mang thông tin di truyền. Cho đến nay, chúng ta biết rằng các nucleic acid, bao gồm deoxyribonucleic acid (DNA) và ribonucleic acid (RNA), là những đại phân tử sinh học có trọng lượng phân tử lớn với thành phần gồm các nguyên tố C, H, O, N và P; chúng được cấu thành từ
nhiều đơn phân (monomer) là các nucleotide. Các đơn phân này nối với nhau bằng các liên kết phosphodiester tạo thành các cấu trúc đa phân (polymer) gọi là các chuỗi, mạch (chain) hay sợi (strand) polynucleotide - cấu trúc sơ cấp của các phân tử nucleic acid.
Trong chương này, chúng ta lần lượt tìm hiểu thành phần hoá học và cấu trúc của các nucleotide và polynucleotide của DNA và RNA.
I. Thành phần hóa học của các nucleotide
Vào giữa thập niên 1940, các nhà hoá sinh học đã biết được các cấu trúc hoá học của DNA và RNA. Khi phân cắt DNA thành các tiểu đơn vị, họ phát hiện ra rằng mỗi nucleotide của DNA gồm ba thành phần: một base nitơ (nitrogenous base), một đường deoxyribose, và một phosphoric acid. Tương tự, RNA cho ra các base, phosphoric acid và đường ribose. Các nucleotide cũng có nhiều chức năng khác trong tế bào, ví dụ như các dòng năng lượng, các chất dẫn truyền thần kinh và các thông tin loại hai như
tải nạp tín hiệu chẳng hạn.
1. Base nitơ
Các base nitơ (gọi tắt là base), thành phần đặc trưng của các nucleotide, là các hợp chất purine và pyrimidine dị vòng chứa nitơ có tính kiềm. Về cơ bản, các dẫn xuất của purine bao gồm adenine (A) và guanine (G), còn của pyrimidine gồm có: thymine (T), uracil (U) và cytosine (C).
DNA chứa bốn loại base chính là adenine, guanine, thymine và
22
cytosine. Trong RNA cũng chứa các base như thế, chỉ khác là uracil thay thế thymine (Hình 2.1). Cần chú ý rằng purine và pyrimidine là các base dị vòng chứa các nguyên tử nitơ nằm xen với các nguyên tử carbon, nên việc đánh số các vị trí không thêm dấu phẩy trên đầu như trong trường hợp của đường pentose (xem các Hình 2.4 - 2.6).
Bên cạnh các dạng phổ biến nói trên, các purine khác cũng có vai trò quan trọng trong trao đổi chất của tế bào, như: xanthine, hypoxanthine và uric acid; còn đối với pyrimidine đó là các orotic và dihydroorotic acid .
Ngoài ra còn bắt gặp một số loại base hiếm thuộc cả hai nhóm purine và pyrimidine. Đó là những base biến đổi chủ yếu do hiện tượng methyl hoá (methylation) xảy ra ở các vị trí khác nhau, chẳng hạn: 1-methyladenine, 6-methyladenine, 2-methylguanine, 5-
methylcytosine v.v.
Hình 2.1 Cấu trúc các base của DNA và RNA. Adenine và guanine là các dẫn xuất của purine; còn cytosine, thymine và uracil là các dẫn xuất của pyrimidine; trong đó uracil là đặc thù cho RNA và thymine cho DNA.
Các base purine và pyrimidine có thể tồn tại dưới các dạng hỗ biến (tautomeric forms) amino và imino (đối với adenine và cytosine; Hình 2.2A), hoặc keto và enol (đối với guanine và thymine; Hình 2.2B). Đó là hai trạng thái tồn tại bền (phổ biến) và
23
kém bền (ít phổ biến), có thể biến đổi qua lại với nhau do sự dịch chuyển vị trí của các nguyên tử hydro trong các base purine và pyrimidine. Hình 2.2 cho thấy các dạng hỗ biến của các base trong DNA. Tương tự, uracil có hai dạng hỗ biến: lactam (dạng keto) chiếm ưu thế ở pH = 7 và lactim (dạng enol) gia tăng khi pH giảm. Chính hiện tượng hỗ biến này dẫn tới thay đổi khả năng kết cặp bình thường của các base và làm phát sinh các đột biến gene dạng thay thế một cặp base.
Các base phổ biến trong cả DNA và RNA là tương đối bền vững ở trạng thái hỗ biến được gọi là dạng hỗ biến ưu thế (dominant tautomeric form); có lẽ đó là lý do tại sao chúng được chọn lọc để mang thông tin di truyền. Nói chung, các base này đều ít tan trong nước và có khả năng hấp thu ánh sáng cực đại ở 260- 270 nanomet (1nm = 10-9m). Chúng có thể được tách ra bằng các phương pháp sắc ký và điện di.
Adenine
Cytosine
(A) AMINO IMINO
24
Guanine
Thymine
KETO ENOL (B)
Hình 2.2 Các dạng hỗ biến của các base trong DNA. (A) Các dạng amino (phổ biến) của adenine và cytosine có thể biến đổi thành các dạng imino; và (B) các dạng keto (phổ biến) của guanine và thymine có thể sắp xếp lại thành các dạng enol. Các mũi tên biểu thị sự dịch chuyển vị trí nguyên tử hydro. R là các gốc đường và phosphate.
2. Đường pentose
Các đường chứa năm carbon (pentose) là sản phẩm của quá trình trao đổi chất trong tế bào, với nhiều loại như: arabinose, ribulose, ribose và dẫn xuất của nó là deoxyribose v.v.
Đường pentose của RNA là D-ribose và của DNA là 2'-deoxy-D ribose (ký hiệu D chỉ dạng đường quay phải trước ánh sáng phân cực để phân biệt với dạng L quay trái không có trong thành phần của các nucleic acid tự nhiên). Các phân tử đường này đều có cấu trúc vòng furanose (gọi như thế bởi vì nó giống với hợp chất furan dị vòng). Do các nguyên tử carbon ở đây xếp liên tục nên được đánh số thứ tự có dấu phẩy trên đầu, ví dụ C1', C2' cho đến C5'.
Hình 2.3 Cấu trúc của các phân tử đường ribose (trái) và deoxyribose (phải); chúng khác nhau ở nguyên tử carbon số 2.
25
Hai phân tử đường này khác nhau ở C2'; trong ribose đó là nhóm hydroxyl và trong deoxyribose là một hydro (Hình 2.3). Do các gốc đường khác nhau này đã tạo ra hai loại nucleotide là ribonucleotide và deoxyribonucleotide, mà từ đó cấu tạo nên hai loại nucleic acid khác nhau tương ứng là RNA và DNA. Và chính sự khác biệt nhỏ nhặt về mặt cấu trúc này đã tạo nên các đặc tính hoá lý rất khác nhau giữa DNA và RNA. Dung dịch DNA tỏ ra đặc quánh hơn nhiều do sự trở ngại lập thể (steric hindrance) và mẫn cảm hơn với sự thuỷ phân trong các điều kiện kiềm (alkaline), có lẽ điều này giải thích phần nào tại sao DNA xuất hiện như là vật chất di truyền sơ cấp (primary genetic material).
Cần để ý rằng, trong các phân tử đường này có ba vị trí quan trọng có chứa nhóm hydroxyl (-OH) tự do, đó là: (i) nhóm -OH ở vị trí C1' có khả năng hình thành liên kết N-glycosid với gốc -NH của các base để tạo thành các nucleoside; (ii) nhóm -OH ở vị trí C5' có khả năng hình thành liên kết ester với nhóm phosphate để tạo ra các nucleotide; và (iii) nhóm -OH ở vị trí C3' có khả năng hình thành liên kết phosphodiester với nhóm phosphate của một nucleotide khác để tạo chuỗi polynucleotide. Như vậy, tính phân cực (polarity) trong gốc đường mà từ đó quyết định tính phân cực của các chuỗi polynucleotide được thể hiện ở hai vị trí C5' và C3'.
3. Phosphoric acid
Phosphoric acid (H3PO4) là acid vô cơ có chứa phosphor (P), một nguyên tố đóng vai trò quan trọng trong trao đổi chất và năng lượng của tế bào. Do có chứa ba nhóm -OH nên acid này có thể hình thành liên kết ester với các gốc đường tại các vị trí C5' và C3' để tạo nên các nucleotide và chuỗi polynucleotide.
Trong các nucleotide của DNA và RNA, nhóm phosphate liên kết với các nucleoside tại C5' (xem Hình 2.5). Trong trường hợp phân tử điều hoà AMP vòng (cyclic AMP = cAMP), nhóm phosphate tạo liên kết ester với hai nhóm -OH ở C5' và C3' trong cùng một nucleotide.
II. Cấu trúc của các nucleotide
1. Cấu trúc của các nucleoside
Các base và đường trong RNA và DNA được nối với nhau thành các đơn vị gọi là nucleoside. Mỗi nucleoside được tạo thành do một base nối với một đường pentose tại vị trí C1' bằng một liên
26
kết β-N-glycosid . Cụ thể là, nguyên tử carbon C1' của đường nối với nguyên tử N1 của pyrimidine hoặc với nguyên tử N9 của purine (xem các Hình 2.4 - 2.6).
Hình 2.4 Cấu trúc của bốn loại deoxynucleoside trong DNA.
Tên gọi chính thức hay danh pháp của các nucleoside bắt nguồn từ các base tương ứng, trong đó các nucleoside là dẫn xuất của purine có đuôi -osine và các dẫn xuất của pyrimidine có đuôi - idine (Bảng 2.1).
2. Cấu trúc của các nucleotide
Đơn vị cấu trúc cơ sở của các nucleic acid là các nucleotide. Các nucleotide là những ester phosphate của các nucleoside. Hiện tượng ester hoá (esterification) có thể xảy ra ở bất kỳ nhóm hydroxyl tự do nào, nhưng phổ biến nhất là ở các vị trí 5' và 3' trong các nucleic acid.
Về cấu trúc, mỗi nucleotide gồm ba thành phần kết dính với nhau như sau: gốc đường pentose nối với một base tại C1' bằng một liên kết β-glycosid và nối với nhóm phosphate tại C5' bằng một liên kết phosphomonoester (Hình 2.5 và 2.6).
Liên kết ester
Đường
Liên kết glycosid
27
Hình 2.5 Cấu trúc của một deoxyribonucleotide (dAMP, bên trái) và một ribonucleotide (UMP). Ở đây cho thấy các mối liên kết N-glycosid và ester.
Như thế tính phân cực trong cấu trúc một nucleotide thể hiện ở các nhóm hydroxyl thuộc hai vị trí C5' (tạo liên kết ester với nhóm phosphate trong từng nucleotide) và C3' (tạo liên kết phosphodiester với nucleotide khác trong chuỗi polynucleotide).
28
Hình 2.6 Cấu trúc chi tiết của bốn loại deoxyribonucleotide trong DNA. Ở đây cũng chỉ ra danh pháp của các nucleoside và nucleotide.
3. Cấu trúc của các nucleoside di- và triphosphate
Như đã đề cập, mỗi nhóm phosphate (phosphate group) được nối với vòng của gốc đường bằng một liên kết phosphomonoester, và nhiều nhóm phosphate có thể nối nhau thành một dãy bằng các liên kết phosphoanhydride (hình 2.7). Sự ester hoá ở C5' có thể đi
29
với mono-, di- hoặc triphosphate (nguyên tử phosphor P được đánh dấu tương ứng với các vị trí từ C5' hướng ra ngoài là α, β và γ). Các nucleoside 5'-triphosphate là những hợp chất cho tổng hợp nucleic acid. Hai nhóm hydroxyl cũng có thể được ester hoá bằng cách nối cùng một nhóm phosphate để sinh ra một nucleotide vòng
(cyclic nucleotide), ví dụ cAMP là 3'-5'-cyclic phosphate (đóng vai trò tải nạp tín hiệu, điều hoà dương tính operon lactose; xem chương 6).
Bảng 2.1 Danh pháp các nucleoside của RNA và DNA Deoxynucleoside
Base Nucleoside (RNA) Purine
(DNA)
Adenine Adenosine = A deoxyadenosine = dA Guanine Guanosine = G deoxyguanosine = dG
Hypoxanthine* Inosine* = I Không có
Pyrimidine
Cytosine Cytidine = C deoxycytidine = dC Thymine Thường không có (deoxy)thymidine = dT** Uracil Uridine = U Thường không có
Ghi chú: * Đây là dạng hiếm, có mặt trong thành phần của các RNA vận chuyển. ** Bởi vì thymine thường không có trong RNA, nên tiếp đầu ngữ "deoxy" chỉ cho loại deoxynucleoside này thường được lượt bỏ và gọi tắt là thymidine. Tuy nhiên, trong các RNA vận chuyển thường có ribothymidine chứa đường ribose.
Các nhóm phosphate
(a) (b)
30
Hình 2.7 (a) Cấu trúc chi tiết của các nucleotide adenosine ở ba trạng thái mono-, di- và triphosphate; và (b) nicotinamide adenosine diphosphate (NADP).
Nói chung, các nucleotide thường có tính acid mạnh và tan trong nước. Các nucleoside monophosphate được xem là các axit đúng như tên gọi phản ảnh (ví dụ AMP là adenylic acid hay adenylate); chúng có sự ion hoá sơ cấp với pKa 1-2 và ion hoá thứ
cấp với pKa 6,5-7,0, như sau:
-H2PO3 ↔ -HPO3- + H+ ↔ PO3-2 + H+
Tất cả các phosphate của các nucleoside di- và triphosphate đều ion hoá, nhưng chỉ nhóm tận cùng là có ion hoá thứ cấp. Các nucleotide này đều có ái lực với cation hoá trị hai như Mg2++ và Ca2++ (chúng tương tác với các nhóm phosphate α và β hoặc β và γ).
III. Cấu trúc của các chuỗi polynucleotide
Các nucleotide trong DNA hoặc RNA nối với nhau bằng các mối liên kết đồng hoá trị (covalent) có tên là liên kết 3',5'- phosphodiester giữa gốc đường của nucleotide này với nhóm phosphate của nucleotide kế tiếp, tạo thành chuỗi polynucleotide. Vì vậy các chuỗi này bao giờ cũng được kéo dài theo chiều 5'→3' (đầu 5' mang nhóm phosphate tự do và đầu 3' chứa nhóm -OH tự do). Chúng có bộ khung vững chắc gồm các gốc đường và phosphate xếp luân phiên nhau, còn các base nằm về một bên. Trình tự các base vì vậy được đọc theo một chiều xác định 5'→3'. Đây là cấu trúc hoá học sơ cấp của DNA và RNA (Hình 2.8 và 2.9).
Hình 2.8 Mô hình cấu trúc chuỗi polynucleotide DNA. Ở đây cho thấy các vị trí 5'-phosphate và 3'-hydroxyl cũng như đường deoxyribose và liên kết
31
phosphodiester nối giữa các gốc đường này.
Thông thường người ta biểu diễn trình tự base 5'→3' theo chiều từ trái sang phải. Hình 2.8 cho thấy các chuỗi DNA và RNA chỉ khác nhau bởi base U hoặc T và gốc đường trong các nucleotide của chúng. Nếu bỏ qua sự khác biệt về gốc đường, ta có thể hình dung trình tự các base của hai chuỗi polynucleotide của DNA và
RNA đều sinh trưởng theo chiều từ 5' đến 3' (5'→3'), như sau: Chuỗi DNA: (5') pApApTpTpCpTpTpApApApTpTpC -OH (3') Chuỗi RNA: (5') pApApUpUpCpUpUpApApApUpUpC -OH (3')
Đầu 5'
Chuỗi DNA
(a)
Đầu 3'
Đầu 5'
Chuỗi RNA
(b)
Đầu 3'
32
Hình 2.9 Cấu trúc chuỗi polynucleotide của DNA (a) và của RNA (b). Các chuỗi polynucleotide bao giờ cũng được tổng hợp (kéo dài) theo chiều 5'→3'; chúng có bộ khung "đường-phosphate" rất vững chắc và trình tự base được viết theo quy ước từ trái (đầu 5') sang phải (đầu 3') đối với chuỗi DNA ở đây như
sau: 5'-...dGdAdCdT..-3', còn đối với chuỗi RNA là 5'-...GACU..-3'.
Cần lưu ý rằng, các hợp chất cho polymer hoá là các nucleoside triphosphate, nhưng các monomer của một nucleic acid là monophosphate. Phản ứng trùng hợp này được xúc tác bởi các enzyme tương ứng là DNA- hoặc RNA polymerase và sinh ra các pyrophosphate (có thể xem thêm trong: tái bản DNA và phiên mã ; chương 5 và 6).
Các oligonucleotide là những nucleic acid ngắn (nghĩa là có độ dài dưới 100 nucleotide). Các oligoribonucleotide tồn tại trong tự nhiên và được sử dụng như là những đoạn mồi (primer) trong tái bản DNA và cho các mục đích khác nhau trong tế bào (xem chương 5). Các oligonucleotide tổng hợp có thể tạo ra bằng sự tổng hợp hoá học và là nguyên liệu thiết yếu cho các kỹ thuật thí nghiệm [ví dụ như dùng để giải mã di truyền, chương 6; có thể tham khảo thêm các kỹ thuật xác định trình tự DNA (DNA sequencing), phản ứng trùng hợp chuỗi bằng polymerase (polymerase chain reaction), lai in situ (in situ hybridization), mẫu dò nucleic acid (nucleic acid probe), lai nucleic acid (nucleic acid hybridization), liệu pháp gene (gene therapy); các chương 3-6].
33
Câu hỏi và Bài tập
1. Phân tích các thành phần hoá học của các nucleotide và mối liên hệ giữa chúng.
2. Vẽ sơ đồ cấu tạo của: (a) các base purine và pyrimidine có mặt trong thành phần của DNA và RNA; và (b) các đường ribose và deoxyribose. Từ đó so sánh cấu trúc của các nucleotide DNA và RNA.
3. Phân tích cấu trúc một nucleoside và một nucleotide của DNA và RNA. Cho các sơ đồ minh hoạ.
4. Phân tích sự hình thành chuỗi polynucleotide của DNA và RNA và chỉ ra những điểm giống và khác nhau giữa chúng. 5. Tính phân cực (polarity) thể hiện như thế nào trong cấu trúc của các nucleotide và chuỗi polynucleotide của DNA và RNA? Giải thích và cho các sơ đồ minh hoạ.
Tài liệu Tham khảo
Tiếng Việt
Nguyễn Bá Lộc. 2004. Giáo trình Axit nucleic và sinh tổng hợp protein (tái bản). Trung tâm Đào tạo Từ xa - Đại học Huế. Hoàng Trọng Phán. 1995. Một số vấn đề về Di truyền học hiện đại (Tài liệu BDTX cho giáo viên THPT chu kỳ 1993-1996). Trường ĐHSP Huế.
Hoàng Trọng Phán. 1997. Di truyền học Phân tử. NXB Giáo Dục. Hoàng Văn Tiến (chủ biên), Lê Khắc Thận, Lê Doãn Diên. 1997. Sinh hoá học với cơ sở khoa học của công nghệ gene. NXB Nông Nghiệp, Hà Nội.
Nguyễn Tiến Thắng, Nguyễn Đình Huyên. 1998. Giáo trình Sinh hoá hiện đại. NXB Giáo Dục.
Tiếng Anh
Blackburn G.M., Gait M.J. (Eds., 1996): Nucleic Acids in Chemistry and Biology. Oxford University Press, Oxford.
Lehninger, .L. et al. (1993): Principles of Biochemistry. Worth Publishers, New York.
Russell PJ. 2003. Essential Genetics. Benjamin/Cummings
34
Publishing Company, Inc, Menlo Park, CA.
Stryer, L. (1981): Biochemistry. W.-H. Freeman and Co., San Francisco.
Tamarin RH. 1999. Principles of Genetics. 6th ed, McGraw-Hill, Inc, NY.
Twyman RM. 1998. Advanced Molecular Biology. BIOS Scientific Publishers Ltd/ Springer-Verlag Singapore Pte Ltd.
Watson JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AM. 1987. Molecular Biology of the Gene. 4th ed, Benjamin/Cummings Publishing Company, Inc, Menlo Park, CA.
Weaver RF, Hedrick PW. 1997. Genetics. 3rd ed, McGraw-Hill Companies, Inc. Wm.C.Browm Publishers, Dubuque, IA.
33
Chương 3
Cấu trúc và Đặc điểm của DNA
"DNA - phân tử quý giá nhất trong tất cả các phân tử" (James D. Watson)
Sự khám phá ra cấu trúc phân tử DNA bởi James Watson và Francis Crick năm 1953 với những hệ quả sinh học của nó là một trong những sự kiện khoa học to lớn nhất của thế kỷ XX. Nếu như sự ra đời của tác phẩm "Nguồn gốc các loài" (1859) của R.Ch.Darwin đã tạo nên một cuộc cách mạng to lớn trong tư tưởng nhân loại, thì khám phá này thực sự làm biến đổi hiểu biết của chúng ta về sự sống. Toàn bộ câu chuyện về việc phát minh ra phân tử kỳ diệu này đã được thiên tài Watson miêu tả hết sức sinh
động trong cuốn hồi ký nhan đề "Chuỗi xoắn kép" (1968). Trong chương này, chúng ta sẽ lần lượt tìm hiểu thành phần hoá học và cấu trúc của DNA cũng như các đặc tính hoá lý của nó. Từ đó bí ẩn của sự sống dần dần hé mở những lời giải đáp thú vị, với biết bao thành tựu to lớn tác động lên mọi mặt của đời sống - xã hội trong suốt hơn 50 năm qua.
I. Thành phần hóa học của DNA
Năm 1944, Oswald T. Avery và các đồng sự của mình chứng minh DNA là vật chất mang thông tin di truyền, chứ không phải protein. Đến năm 1949, Erwin Chargaff áp dụng phương pháp sắc ký giấy vào việc phân tích thành phần hóa học của DNA các loài khác nhau (Bảng 3.1) đã khám phá ra rằng:
Bảng 3.1 Thành phần base của DNA ở một số loài
GA
+
Sinh vật A% T% G% C% T C +
TA
+
G C +
Phage lambda 21,3 22,9 28,6 27,2 1,00 0,79 Phage T7 26,0 26,0 24,0 24,0 1,00 1,08 Mycobacterium
tuberculosis 15,1 14,6 34,9 35,4 1,00 0,42 Escherichia coli 24,7 23,6 26,0 25,7 1,03 0,93 Aspergillus niger (nấm
mốc) 25,0 24,9 25,1 25,0 1,00 1,00 Saccharomyces cerevisiae 31,3 32,9 18,7 17,1 1,00 1,79 Triticum (lúa mỳ) 27,3 27,1 22,7 22,8 1,00 1,19
34
Zea mays (ngô) 26,8 27,2 22,8 23,2 0,98 1,17 Salmo salar (cá hồi) 29,7 29,1 20,8 20,4 1,02 1,43 Gallus domestica (gà nhà) 29,5 27,7 22,4 20,4 1,08 1,34 Homo sapiens (người) 30,9 29,4 19,9 19,8 1,01 1,52
(i) Số lượng bốn loại base trong DNA là không bằng nhau; (ii) Tỷ lệ tương đối của các base là không ngẫu nhiên; và trong tất cả các mẫu DNA nghiên cứu tồn tại mối tương quan về hàm lượng (%) giữa các base như sau: A≈T và G≈C, nghĩa là tỷ số (A+G)/ T+C) ≈1; và
(iii) Mỗi loài có một tỷ lệ (A+T)/(G+C) đặc thù.
II. Cấu trúc chuỗi xoắn kép DNA
Vào năm 1951-52, việc nghiên cứu cấu trúc ba chiều của DNA bằng phân tích nhiễu xạ tia X được bắt đầu bởi Maurice Wilkins và Rosalind Franklin. Các bức ảnh chụp được 1952 (hình 3.1) gợi ý rằng DNA có cấu trúc xoắn gồm hai hoặc ba chuỗi. Lúc này ở Anh còn có một số nghiên cứu khác nhằm phát triển lý thuyết nhiễu xạ
của Linus Pauling để tìm hiểu cấu trúc DNA. Tuy nhiên, giải pháp đúng đắn nhất là chuỗi xoắn kép bổ sung do Watson và Crick đưa ra năm 1953 (Hình 3.2 và 3.3). Mô hình này hoàn hoàn toàn phù hợp với các số liệu của Wilkins và Franklin cũng như của Chargaff. Sự kiện này mở ra một bước ngoặt mới cho cho sự ra đời và phát triển với tốc độ nhanh chóng của di truyền học phân tử.
(a) (b)
Hình 3.1 (a) R.Franklin (trái) và M.Wilkins; và (b) Ảnh chụp cấu trúc DNA tinh thể bằng tia X của Franklin.
35
(a) (b) Hình 3.2 (a) J.Watson (trái) và F.Crick; và (b) Mô hình cấu trúc tinh thể DNA.
Hình 3.3 Các mô hình cấu trúc chuỗi xoắn kép DNA.
1. Mô hình Watson-Crick
Mô hình Watson-Crick (DNA dạng B; Hình 3.3) có các đặc điểm sau:
(1) DNA gồm hai chuỗi đối song song (antiparallel) cùng uốn quanh một trục trung tâm theo chiều xoắn phải, với đường kính 20Ao (1Angstrom = 10-10m), gồm nhiều vòng xoắn lặp lại một cách đều đặn và chiều cao mỗi vòng xoắn là 34 Ao, ứng với 10 cặp base
(base pair, viết tắt là bp).
36
(2) Các bộ khung đường-phosphate phân bố ở mặt ngoài chuỗi xoắn và các base nằm ở bên trong; chúng xếp trên những mặt phẳng song song với nhau và thẳng góc với trục phân tử, với khoảng cách trung bình 3,4 Ao.
(3) Hai sợi đơn gắn bó với nhau bằng các mối liên kết hydro (vốn là lực hóa học yếu) được hình thành giữa các cặp base đối diện theo nguyên tắc bổ sung "một purine - một pyrimidine". Cụ thể là, trong DNA chỉ tồn tại hai kiểu kết cặp base đặc thù là A-T (với
hai liên kết hydro) và G-C (với ba liên kết hydro) (Hình 3.3 và 3.4). (4) Tính chất bổ sung theo cặp base dẫn đến sự bổ sung về trình tự các base giữa hai sợi đơn của mỗi chuỗi xoắn kép. Vì vậy, trong bất kỳ một phân tử DNA sợi kép nào hoặc một đoạn của nó bao giờ cũng có: A = T và G = C; nghĩa là: [A + G] = [T + C] hay
GA (đây là tỷ số giữa các base purine và các base pyrimidine), +
T C +
= 1
còn tỷ lệ G CTA
+ là đặc thù cho từng loài (thực chất đây là tỷ lệ giữa +
hai base không bổ sung cho nhau hoặc giữa hai base cùng nhóm, ví dụ A/G hoặc T/C).
Như vậy, mô hình cấu trúc chuỗi xoắn kép của Watson-Crick (1953) hoàn toàn thoả mãn và cho phép lý giải một cách thoả đáng các kết quả nghiên cứu của Chargaff (1949). Vì vậy người ta gọi các biểu thức A = T và G = C là các quy luật hay quy tắc Chargaff (Chargaff's rules).
Theo nguyên tắc bổ sung của các cặp base, ta có thể xác định trình tự base ở sợi bổ sung khi biết được trình tự base của một sợi đơn. Ví dụ:
Sợi cho trước: 5'- AATTCTTAAATTC -3'
Sợi bổ sung: 3'- TTAAGAATTTAAG -5'
37
Hình 3.4 Hai kiểu kết cặp base của DNA. Cặp AT nối với nhau bằng hai liên kết hydro và cặp GC - ba liên kết hydro (biểu thị bằng các đường chấm: ---). Các nguyên tử C1' đại diện cho vị trí của đường và phosphate ở mỗi cặp nucleotide.
Tóm lại, hai đặc điểm quan trọng nhất trong cấu trúc DNA là sự phân cực ngược chiều của hai sợi đơn (5'→3' và 3'→5') và nguyên tắc bổ sung của các cặp base (A-T và G-C). Đây là hai nguyên lý căn bản chi phối các cơ chế di truyền ở cấp độ phân tử (tái bản, phiên mã và dịch mã), mà ta có thể hình dung tổng quát dưới dạng các kênh truyền thông tin di truyền trong tế bào (được gọi là Giáo lý hay Lý thuyết trung tâm, Central Dogma, của Sinh học phân tử; Hình 3.5) sau đây:
38
Hình 3.5 Lý thuyết trung tâm của Sinh học phân tử
🕥 Về tầm vóc vĩ đại của phát minh cấu trúc phân tử DNA, Lawrence Bragg - Giám đốc Phòng thí nghiệm Cavendish (England) - đánh giá rằng: "Sự phát minh ra cấu trúc DNA với tất cả các hệ quả sinh học của nó là một trong các sự kiện khoa học to lớn nhất của thế kỷ chúng ta..." (Watson 1968, bản Việt dịch của Lê Đình Lương và Thái Doãn Tĩnh, Nxb KH-KT tr.9). Nhờ phát minh vĩ đại đó, Watson và Crick cùng chia xẻ với Wilkins giải thưởng Nobel năm 1962.
Thật vậy, nhìn lại ta thấy rằng Watson và Crick đã công bố phác thảo về mô hình cấu trúc DNA trong bài báo nhan đề "A Structure for Deoxyribose Nucleic Acid" trên tạp chí Nature Vol. 171, trang 737 ngày 25-4-1953 (✀ http://www.nature.com/). Đây là một bài báo khoa học kinh điển rất ấn tượng và không bình thường tý nào! Một cách chính xác, bài báo này chỉ dài 900 chữ với vỏn vẹn 128 dòng, nhưng đằng sau mỗi dòng là cả một lịch sử khoa học kỳ diệu, một câu chuyện thú vị. Bài báo này được công bố rất
nhanh, chưa đầy một tháng kể từ sau ngày gởi đăng. Trên thực tế, Crick muốn làm sáng tỏ các hàm ý sinh học của mô hình này, nhưng Watson thì chẳng hài lòng với cách làm như vậy. Hai ông đã thoả thuận trong một câu mà nó đã trở thành một trong những câu nói giản lược vĩ đại trong tài liệu khoa học: "Chúng ta không thể không nhận thấy rằng nguyên tắc kết cặp base đặc thù mà chúng tôi nêu lên ngay lập tức gợi ra một cơ chế sao chép khả dĩ cho vật chất (di truyền) nói chung". ["It has not escaped our noticed that the specific base pairing we have proposed immediately suggests a possible copying mechanism for the general (genetic) material."].
39
Hình 3.6 Mô hình tái bản của DNA do Watson gợi ý từ 1953.
Như câu nói đầy khêu gợi này đã chỉ rõ, mô hình của Watson và Crick quả thực gợi ra một cơ chế sao chép cho DNA. Vì một sợi là bổ sung (complement) của sợi kia, nên hai sợi có thể được tách ra và mỗi sợi sau đó có thể dùng làm khuôn (template) cho việc xây dựng nên một sợi mới cặp với nó (Hình 3.6). Bằng cơ chế tái bản bán bảo toàn (semiconservative replication) như thế sẽ đảm bảo được hai phân tử DNA con tạo ra có cấu trúc giống hệt DNA cha mẹ, và qua đó các tế bào sinh ra sẽ chứa các gene giống nhau; nghĩa là có thể giải thích được tại sao con cái thường giống cha mẹ. Quả thực đây là sự tiên đoán thiên tài mà sự đúng đắn của nó đã được chứng minh bằng các thực nghiệm khác nhau chỉ sau đó vài năm (xem chương 5).
Đến đây hẳn là chúng ta có thể hiểu tại sao Watson lại đưa ra được những nhận định sắc sảo tuyệt vời và cực kỳ chính xác đến như vậy, chẳng hạn: "Một cấu trúc tuyệt đẹp như thế, lẽ tự nhiên là phải tồn tại trên thực tế", hay "Cách giải quyết đúng không những phải đẹp mà còn phải đơn giản". Bạn có thể làm sáng tỏ điều này? Và bạn có thể học được gì từ bài báo kinh điển của Watson và Crick với nhan đề "A Structure for Deoxyribose Nucleic Acid" trên tạp chí Nature ngày 25-4-1953 (✀ http://www.nature.com/) và từ
Lời bình độc đáo của Tom Zinnen (2004) về bài báo khoa học này (✀ http://www.accessexcellence.com/ )?
2. Các dạng DNA xoắn phải và xoắn trái
Mô hình Watson-Crick hay DNA dạng B là cấu trúc phổ biến.
40
Tuy nhiên, sau này người ta còn phát hiện ra nhiều dạng xoắn phải khác (A, C, D...); chúng có một số biến đổi so với DNA-B (xem Bảng 3.2).
DNA dạng A DNA dạng B DNA dạng Z Hình 3.7 Các mô hình DNA dạng A, B và Z ( hình trên) và thiết diện cắt ngang của chúng cho thấy vị trí phân bố của một cặp base.
Bên cạnh các dạng DNA xoắn phải, Alexander Rich và đồng sự (1979) còn phát hiện thêm một dạng DNA xoắn trái duy nhất cho đến nay. Dạng DNA này có bộ khung hình zigzag (nên gọi là DNA Z, và cũng là chữ cái cuối cùng trong bảng chữ cái Latin) uốn gập khúc theo chiều xoắn trái, mỗi vòng xoắn dài 45,6Ao chứa 12 cặp base. Nhìn chung, so với DNA dạng B, DNA-Z dài và gầy hơn, các rãnh lớn bị dẹt ra phần bề mặt của chuỗi xoắn; còn DNA dạng A ngắn và to mập hơn (Hình 3.7 và Bảng 3.2).
Những vùng nào của DNA có chứa các purine và pyrimidine
41
sắp xếp xen kẽ nhau trên một sợi thì có thể tiếp nhận cấu hình DNA-Z, ví dụ:
5'--GCGCGCGC--3'
3'--CGCGCGCG--5'
Sự chuyển đổi này cũng được tạo thuận lợi bởi sự có mặt của 5- methylcytosine và bởi trạng thái siêu xoắn nghịch (negative supercoiling). DNA là một phân tử đông học và vì vậy nó có thể chuyển từ một cấu hình này sang một cấu hình khác dựa trên các lực bên ngoài trong tế bào. Có thể là sự chuyển đổi từ dạng B sang dạng Z có liên quan đến sự điều hoà biểu hiện gene. Mặc dù Rich khám phá DNA-Z khi nghiên cứu về các hợp chất mô hình, cấu trúc này dường như cũng có mặt trong các tế bào sống ở một tỷ lệ nhỏ song chức năng của nó vẫn còn chưa thật sự hiểu rõ.
Bảng 3.2 Một số đặc điểm chính của các DNA dạng A, B, C và Z
Dạng
Chiều xoắn
Số bp/vòng xoắn
Đường kính chuỗi xoắn
A Phải 11,0 23Ao
B Phải 10,0 19Ao
C Phải 9,3 19Ao
Z Trái 12,0 18Ao
*Nguồn: J.Kimball (từ internet). Về chi tiết, có thể xem trong Watson et al (1987, tr.249) và Twyman (1998; tr.229).
3. Các DNA mạch vòng sợi kép và sợi đơn
Kể từ sau khám phá quan trọng của Watson và Crick, cho đến nay không những đã phát hiện thêm các dạng DNA xoắn phải và xoắn trái, mà trên thực tế còn có các bộ gene được tổ chức theo những thể thức khác, đó là: DNA sợi kép dạng vòng có mặt ở hầu hết các bộ gene prokaryote, bộ gene một số virus và bộ gene tế
bào chất của các tế bào eukaryote (các phân tử DNA ty thể và lạp thể); DNA sợi đơn vòng của một số virus ký sinh ở vi khuẩn; và bộ gene RNA của nhiều virus ký sinh ở các thực vật và động vật. Đáng kể là các virus RNA gây ung thư, HIV/AIDS và các virus thuộc họ corona gây viêm phổi cấp (SARS) với nhiều biến thể có khả năng lây lan sang nhiều vật chủ khác nhau và có nguy cơ làm xuất hiện nạn đại dịch trên phạm vi toàn cầu hiện nay. Vấn đề này sẽ được đề cập thêm ở mục III dưới đây và ở Bảng 3.3.
42
🞱 Thảo luận thêm về các bậc cấu trúc của các nucleic acid: ⦸ Cấu trúc bậc một của nucleic acid là các chuỗi polynucleotide;
🙱 Cấu trúc bậc hai của các nucleic acid được sinh ra bởi hai loại tương tác không phải đồng hoá trị: sự kết cặp base (base pairing) và sự co cụm base (base stacking). Sự kết cặp base liên quan với các liên kết hydro và là lực chiếm ưu thế khiến cho các sợi nucleic acid kết hợp với nhau, nhưng cấu trúc được giữ ổn định bằng các tương tác hydrophobic giữa các base kề sát nhau mang lại bằng các điện tử pi (π) trong các vòng. Các mối tương tác π-π này được mô tả như là các lực kéo co cụm base. Cấu trúc bậc hai của DNA được đặc trưng bằng sự kết cặp base giữa các phân tử
để sinh ra các phân tử sợi kép hay sợi đôi (double-stranded or duplex; ký hiệu là dsDNA). Các cấu trúc bậc hai trong RNA, vốn tồn tại nguyên thuỷ ở dạng sợi đơn (single-stranded form), nói chung phản ảnh các mối tương tác base nội trong phân tử.
❺ Trong cấu trúc của các chuỗi xoắn kép DNA, quan trọng nhất là sự kết cặp base bổ sung (complementary base pairing) A-T và G-C. Các cặp base Watson-Crick này (Watson-Crick base pairs) tạo thành cơ sở của hầu hết các tương tác cấu trúc bậc hai trong các nucleic acid, cũng như giải thích cho các quy tắc Chargaff, và chúng đồng thời xác định cách thức DNA có thể hoạt động như là cái khuôn cho tái bản và phiên mã... Trong RNA, uracil thay thế cho thymine, nhưng vì uracil có cấu trúc hoá học tương tự với thymine và hình thành các liên kết hydro với adenine y như thế, cả hai nucleic acid lai theo cùng các quy tắc chung. Tuy nhiên, vì các mối tương tác này có mặt khắp nơi, nên có những sơ đồ kết cặp base biến đổi đôi chút so với các kiểu kết cặp Watson-Crick; chúng đóng các vai trò quan trọng trong việc hình thành các cấu trúc bậc hai và bậc ba.
❺ Cho đến nay, bên cạnh các cặp base Watson-Crick chiếm ưu thế trong các cấu trúc và chức năng của các nucleic acid, người ta thấy có 28 cách sắp xếp khả dĩ của ít nhất hai liên kết hydro giữa các base; điều này cung cấp cơ sở cho một nhóm đa dạng các tương tác. Có ý nghĩa đáng kể nhất trong số các cấu hình biến đổi này là các cặp base Hoogsteen (Hoogsteen base pairs), vốn góp phần vào cấu trúc bậc ba của tRNA và cho phép hình thành các chuỗi xoắn ba (triple helices). Một sự sửa đổi so với các cặp base Watson-Crick là các cặp linh hoạt (wobble pairs). Vấn đề này sẽ
43
được xem xét trở lại ở các chương 4 (cấu trúc và chức năng của tRNA) và 6 (mục III: mã di truyền, giả thuyết linh hoạt). ❺ Về các cấu hình chuỗi xoắn và tính mềm dẻo cục bộ trong cấu trúc DNA: Bên cạnh cấu trúc DNA sợi kép (dsDNA) dạng B phổ biến do Watson và Crick đưa ra năm 1953, còn có các dạng biến đổi khác như đã đề cập ở trên. Một đặc điểm khác nữa đó là tính mềm dẻo cục bộ (local flexibility) trong cấu trúc DNA. Nhiều thực nghiệm đã cho thấy rằng DNA dạng B đặc biệt mềm dẻo linh hoạt, nó không tồn tại ở các dạng có cấu hình cứng nhắc mà có thể thay đổi một cách uyển chuyển giữa các cấu hình khác nhau do các hiện tượng đa hình cục bộ gây ra, chẳng hạn như DNA có thể uốn gập và hoán chuyển chuỗi xoắn (helical transitions) nội trong một phân tử đơn (ví dụ sự hoán chuyển qua lại giữa các dạng B và Z đã nói ở trên). DNA cuộn gập cũng có thể được cảm ứng bởi các protein và tạo vòng (circularization). Việc cuộn lại do cảm ứng cần thiết cho sự đóng gói DNA trong các nhiễm sắc thể (Hình 3.10) và cho tái bản, tái tổ hợp và phiên mã (chương 5 và 6). Các protein cũng có thể nhận biết DNA được cuộn lại theo thể thức nào đó (ví dụ các topoisomerase nhận biết các khởi điểm tái bản). ❺ Cấu trúc bậc hai trong RNA và DNA không thuộc dạng sợi đôi: Trong RNA và các vùng DNA sợi đơn, cấu trúc bậc hai được xác định bằng sự kết cặp base nội phân tử. Cấu trúc bậc hai trong RNA đóng vai trò chính yếu trong biểu hiện gene và điều hoà của nó. Ví dụ: sự kết cặp base giữa rRNA và mRNA kiểm soát việc khởi đầu tổng hợp protein; sự kết cặp base giữa tRNA và mRNA xảy ra trong dịch mã; các cấu trúc kẹp tóc trong RNA (RNA hairpin loop) và các vòng thân (stem loops) kiểm soát sự kết thúc phiên mã, hiệu quả dịch mã và sự ổn định của mRNA; và sự kết cặp base RNA-RNA cũng đóng vai trò quan trọng trong việc tách bỏ các intron (xem các chương 4 và 6).
🙴 Cấu trúc bậc ba của các nucleic acid phản ảnh các mối tương tác góp phần kiến thiết toàn bộ hình dáng ba chiều của DNA và RNA. Điều này bao gồm các tương tác giữa các yếu tố cấu trúc bậc hai khác nhau, các mối tương tác giữa các sợi đơn và các yếu tố cấu trúc bậc hai, và các đặc điểm hình thể của các nucleic acid.
❺ Các tương tác sợi bậc ba trong DNA: Trong DNA, các mối tương tác bậc ba có liên quan tới sự tương tác giữa các sợi đơn với các sợi đôi hoặc tương tác giữa các sợi đôi với các sợi đôi, kết quả là tạo thành các cấu trúc bộ ba và bốn sợi (triple and
44
quadruple strand structures). Các guanine có thể hình thành các bộ bốn base (base tetrads), và các DNA chứa các loạt gốc guanine có thể tạo thành các cấu trúc bộ bốn mà từ đó có thể góp phần vào cấu trúc telomere (chương 5). Ví dụ, DNA dạng H là một dạng của DNA bộ ba sợi nội phân tử xuất hiện trong các đoạn bắt cặp homopurine/homopyrimidine và có liên quan các cặp base Hoogsteen. Bây giờ ta hãy hình dung các cấu trúc bậc ba được gọi là các vòng R (R-loop) tạo thành khi RNA được phiên mã từ DNA sợi kép được cố định tại chỗ (in situ), xảy ra chẳng hạn trong khi mồi hoá cho tái bản ở plasmid ColE1. Các cấu trúc bậc ba bốn sợi, các chỗ nối trong mô hình Holliday, cũng hình thành trong khi tái tổ
hợp (có thể xem tái tổ hợp tương đồng).
❺ Các tương tác sợi bậc ba trong RNA: Việc RNA cuộn lại thành các cấu trúc phức tạp có dính dáng tới các tương tác bậc ba giữa các sợi, các vòng (loops) và các sợi đôi. Ví dụ, trong tRNA có các ví dụ về các bộ ba base, các đoạn của chuỗi xoắn ba, các chỗ
nối phần thân (stem junctions; trong đó hai hoặc nhiều vùng sợi đôi được nối với nhau) và các mấu giả (pseudo-koots; tại đó các sợi tương tác với các vòng thân - stem loop).
❺ Đối với các đặc điểm cấu trúc hình học của DNA, nếu như các phân tử DNA có các đầu mút tự do (ví dụ một phân tử mạch thẳng) thì hai sợi mở xoắn quanh nhau theo cách tiện ích nhất về mặt năng lượng và phân tử đó được coi là được giãn xoắn (relaxed). Tuy nhiên, trong các DNA mạch vòng, không có các đầu mút tự do và nó chỉ được biến đổi bằng cách cắt mở vòng, chứ không phải bằng cách làm biến dạng nó. Nếu như DNA ở dạng vòng khép kín tiến hành tháo xoắn thì cách duy nhất để làm giãn xoắn kiểu vặn xoắn như vậy được tạo ra thông qua sự siêu xoắn (supercoiling), tại đó một sự vặn xoắn được đưa vào trong chính trục chuỗi xoắn. Trạng thái siêu xoắn là một dạng khác nữa của cấu trúc bậc ba của nucleic acid. Ý nghĩa sinh lý học của sự siêu xoắn là ở chỗ DNA không bị bó chặt thì thường không có hoạt tính sinh học. Trạng thái siêu xoắn nghịch tỏ ra cần thiết cho nhiều quá trình thiết yếu, như: tái bản, phiên mã và kể cả tái tổ hợp, DNA siêu xoắn lưu giữ năng lượng để điều khiển các phản ứng này. Ở các eukaryote vốn chứa các nhiễm sắc thể mạch thẳng, các vùng bó chặt về mặt không gian được bắt đầu bằng cách tổ chức chromatin thành các vòng với các đầu mút được cố định bởi các protein chống đỡ; các nucleosome đưa các cuộn siêu xoắn nghịch vào trong DNA eukaryote (xem Hình 3.10).
45
🙲 Cấu trúc bậc bốn của các nucleic acid: Trong nhiều cấu trúc, các nucleic acid tương tác ở cấu hình trans (ví dụ, ribosome và spliceosome), và đây có thể xem là bậc bốn của cấu trúc nucleic acid. Các nucleic acid cũng tương tác với một số lượng lớn các protein (ví dụ, các protein cấu trúc bộ gene, các yếu tố phiên mã, các enzyme, các nhân tố splicing). Khá nhiều các protein này gây một tác dụng đáng kể lên cấu hình DNA và RNA. Ví dụ enzyme cắt giới hạn EcoRI có thể bám vào đoạn nhận biết trong DNA và từ đó phát huy hoạt tính cắt bên trong sợi...
III. Định khu, hàm lượng và kích thước của DNA 1. Sơ lược về bộ gene của các virus, prokaryote và eukaryote
Virus là nhóm "sinh vật" bé nhất chưa có cấu tạo tế bào, không tồn tại đơn độc mà ký sinh bắt buộc ở các tế bào sinh vật tiền nhân (prokaryote) hoặc sinh vật nhân chuẩn (eukaryote); chỉ trong điều kiện đó chúng mới có khả năng tái bản. Các virus ký sinh hoặc gây nhiễm vi khuẩn gọi là thể thực khuẩn (bacteriophage) hay phage. Cấu trúc của các virus tương đối đơn giản, gồm hai phần chính là lõi acid nucleic và vỏ protein (Hình 3.8). Một số virus ở thực vật hoặc các virus gây ung thư, AIDS, SARS ở người và động vật có bộ gene là RNA. Số còn lại bao gồm nhiều virus ký sinh ở vi khuẩn và động vật có bộ gene là DNA sợi kép hoặc sợi đơn, có mạch thẳng hoặc mạch vòng (Bảng 3.3).
(a)
46
(b) (c)
Hình 3.8 (a) Vi ảnh điện tử của phage T4 và sự bám của phage trêm màng tế bào E. coli (từ trái sang). (b) Bản đồ DNA sợi đơn vòng của phage φX174 với một số gene gối nhau. (c) Sơ đồ cấu trúc của HIV - một retrovirus.
Nhóm prokaryote bao gồm các vi khuẩn (bacteria) và vi khuẩn cổ (archae) là các sinh vật có cấu tạo tế bào đơn giản nhất. Vi khuẩn Escherichia coli (hình 3.9) là đối tượng được sử dụng rộng rãi trong các nghiên cứu di truyền phân tử. Bộ gene chính của nó là một phân tử DNA sợi kép vòng có kích thước lớn (4.639.221 cặp base, với 4290 gene mã hóa protein và 53 gene RNA) gọi là nhiễm sắc thể chính. Nó thường tập trung ở một "vùng nhân" (nucleoid), không có màng nhân bao bọc, và ở trạng thái siêu xoắn
(supercoiled DNA) dưới sự kiểm soát của các enzyme topoisomerase. Ngoài ra còn có nhiều phân tử DNA sợi kép trần mạch vòng khác có kính thước bé hơn nhiều, gọi là các plasmid.
Lưu ý: Từ đầu thập niên 1990 đến nay, người ta phát hiện thấy rằng tổ chức bộ gene DNA sợi kép của nhiều vi khuẩn không chỉ có một phân tử mạch vòng (như ở Bacillus, E. coli, Pseudomonas, v.v.) mà còn có thể có các trường hợp sau: 1 DNA mạch thẳng (Borella = 0,91 Mbp); 2 DNA mạch vòng (ví dụ: V. cholera = 2,9 + 1,1 Mbp); hoặc 3 DNA vòng (ví dụ: Paracoccus denitrificans = 2,0 + 1,1 + 0,64 Mbp); hoặc thậm chí bộ gene của Agrobacterium tumefaciens gồm một DNA mạch thẳng (2,1 Mbp) và một DNA mạch vòng (3,0 Mbp). Về phần các plasmid cũng vậy, ví dụ ở chi Borella có rất nhiều plasmid vòng và thẳng với kích thước biến thiên từ 5 đến 200 Kbp. (1 Mbp = 103 Kbp = 106 bp). [Về chi tiết, có thể xem trong chương 2 của Giáo trình Di truyền Vi sinh vật do Hoàng Trọng Phán chủ biên; Nxb Đại Học Huế - 2006.]
47
(a) (b) Hình 3.9 (a) Ảnh chụp các tế bào E. coli . (b) Sơ đồ tổ chức vật chất di truyền của tế bào E. coli cùng với vi ảnh điện tử của plasmid pSC101 (hình dưới).
Nhóm eukaryote là nhóm lớn nhất và tiến hóa đa dạng nhất về trình dộ tổ chức cơ thể, bao gồm tất cả các sinh vật có cấu tạo tế bào (trừ vi khuẩn và vi khuẩn lam), có thể là đơn bào hoặc đa bào. Trong tế bào chứa hai hệ thống di truyền, bộ gene nhân và bộ gene tế bào chất. Bộ gene tế bào chất bao gồm các phân tử DNA sợi kép vòng, đó là: các DNA ty thể (mitochondrial DNA = mtDNA) có mặt trong tất cả các tế bào eukaryote, còn DNA lạp thể (chloroplast DNA = cpDNA hay ctDNA) chỉ có trong các tế bào thực vật (xem mục 4). Trong nhân tế bào eukaryote chứa nhiều nhiễm sắc thể; mỗi nhiễm sắc thể là một phức hợp nucleoprotein (còn gọi là chất nhiễm sắc, chromatin), gồm một phân tử DNA mạch kép thẳng kết hợp với các phân tử protein cơ sở có tên là các histone (giàu lysine và arginine). Đơn vị tổ chức của cơ sở của nhiễm sắc thể eukaryote là các nucleosome (hình 3.10a) có đường kính khoảng 11 nm, gồm một khối cầu tám phân tử histone, (H2A+ H2B +H3+H4)2, gọi là lõi octamer và đoạn DNA có kích thước 146 cặp base quấn xung quanh nó 1¾ vòng (thường được mô tả là 160- 200 bp quấn hai vòng quanh octamer). Một phân tử H1 bám vào các vùng DNA nối (linker DNA) bên ngoài nucleosome, giữ vững sự tương tác của DNA với các histone lõi. Các mức độ tổ chức hay sự hoá xoắn của nhiễm sắc thể eukaryote được mô tả ở hình 3.10b.
48
(a) (b)
(c)
Hình 3.10 Tổ chức DNA trong nhiễm sắc thể eukaryote. (a-b) Cấu trúc một nucleosome và chuỗi nucleosome; (c) Các mức độ tổ chức của vật chất di truyền ở tế bào eukaryote.
2. Mối quan hệ giữa kích thước bộ gene và tính phức tạp về mặt tiến hóa
Dựa trên các kết quả phân tích bộ gene của các virus và vi
49
khuẩn cũng như của bộ gene ở eukaryote (bộ nhiễm sắc thể đơn bội), cho phép khái quát như sau: Kích thước của bộ gene tăng lên tương đối cùng với mức độ phức tạp về tiến hóa.
Thật vậy, từ bảng 3.3 cho thấy rằng kích thước bộ gene của các virus nói chung là rất nhỏ so với nhóm prokaryote; và kích thước bộ gene của các prokaryote lại tỏ ra quá đơn giản so với ngay cả một eukaryote đơn bào như nấm men.
Trong khi DNA của một vi khuẩn điển hình như E. coli hơn 4,6 triệu cặp base và chứa 4.377 gene mã hóa protein (không kể 53 gene RNA), thì phage MS2 là một trong các virus bé nhất, bộ gene RNA của nó cũngchỉ có 3.569 base với tất cả 4 gene; hoặc có kích thước lớn như virus Epstein-Barr (bộ gene DNA sợi kép mạch vòng) cũng chỉ có 172.282 cặp base với tất cả 80 gene.
Nếu xét trên cả hai nhóm prokaryote và eukaryote, ta thấy rằng kích thước các bộ gene biến thiên rất rộng: bộ gene đối với một sinh vật sống tự do (một vi khuẩn) được biết là bé nhất chứa khoảng 600.000 cặp base DNA, trong khi các bộ gen người và chuột là khoảng 3 tỷ. Nếu xét riêng ở nhóm eukaryote, ta đã biết mỗi loài có một số lượng nhiễm sắc thể đặc trưng và nó không phản ánh trình độ tiến hóa của các loài. Tuy nhiên, về mặt nào đó rõ ràng là có sự tương quan thuận giữa hàm lượng DNA của các bộ gene đơn bội và nấc thang tiến hóa của các động-thực vật. Dù vậy vẫn có một số ngoại lệ so với quy tắc này!
3. Hàm lượng DNA và nghịch lý giá trị C
Chẳng hạn, mặc dù Psilotum nudum, đôi khi gọi là "dương xỉ lông", là một thực vật đơn giản hơn nhiều so với loài Arabidopsis thaliana vốn là một thực vật có hoa thuộc họ cải, nhưng nó lại có kích thước bộ gene lớn hơn tới 3.000 lần. Đó là do trên 80% bộ gene của nó là DNA lặp lại không chứa thông tin di truyền nào cả! Hay một số thực vật (như ngô, loa kèn) hay một số động vật (như lưỡng thê, cá) lại có kích thước bộ gene lớn gấp nhiều lần so với lớp thú (bảng 3.3). Một số lưỡng thê chứa DNA nhiều gấp bộ gene chúng ta đến 30 lần, nhưng chắc chắn không phải là chúng phức tạp gấp chúng ta 30 lần.
Người ta gọi tổng hàm lượng DNA trong bộ gene đơn bội là giá trị C (C-value). Với phân tích ở trên cho thấy không hề tồn tại một mối quan hệ kiên định nhất quán giữa giá trị C và tính phức tạp của một sinh vật (như lưỡng thê với thú); cái đó gọi là nghịch lý giá trị C
50
(C-value paradox).
Bảng 3.3 Kích thước bộ gene của một số sinh vật thường gặp Số
Bộ gene sinh vật Số bp Virus
gene Ghi chú
Phage Ø-X174 (ở E. coli) 5.386 10 DNA sợi đơn vòng DNA sợi kép
Phage lambda (ở E. coli) 48.502 ~61 Phage T2 hoặc T4 (ở E.
coli) ~2x105150- 200
thẳng
DNA sợi kép thẳng
Phage MS2 (ở E. coli) 3.569 4 RNA SV40 (gây khối u ở khỉ) 5.226 DNA sợi kép vòng RNA; viêm phổi
Virus SARS (ví dụ, H5N1) 29.600
Epstein-Barr virus (EBV) 172.282 80 Prokaryote
Haemophilus influenzae 1.830.138 1.738 Chlamydia trachomatis 1.042.519 936
cấp
DNA sợi kép thẳng
Gây nhiễm tai giữa
Bệnh lây qua tình dục
Streptococcus pneumoniae 2.160.837 2.236 Pneumococcus Ở 2 NST; gây
Vibrio cholerae 4.033.460 3.890 Mycobacterium
cholera
tuberculosis 4.411.532 3.959 Gây bệnh lao Bacillus subtilis 4.214.814 4.779
Escherichia coli (1) 4.639.221 4.377 Có 4290 cistron Agrobacterium
tumefaciens (2) 4.674.062 5.419 Vector hữu ích... E. coli O157:H7 5.44 x 106 5.416 Gây bệnh ở người Eukaryote
12.495.68
Saccharomyces cerevisiae
2 5.770 Men bia nảy chồi
Schizosaccharomyces pombe
Plasmodium falciparum (3)
12.462.63
7 4.929
22.853.76
4 5.268
38.639.76
Nấm men phân cắt
Gây sốt rét nguy nhất
Neurospora crassa
9 10.082 + 498 gene RNA
Caenorhabditis elegans (4)
100.258.1 71
~19.00
0 Giải tr.tự đầu tiên
Arabidopsis thaliana 115.409.9 25.498 Thực vật có hoa
Drosophila melanogaster
51
49
122.653.9
77 13.379 Ruồi giấm
Người (Homo sapiens) (5) ~3,2 x 109~25.000 Hoàn tất 4/2003
Lúa (Oryza sativa ) 4,3 x 108
~60.00
0
Chuột (Mus musculus) 2,2 x 109 ? Lưỡng thê (Xenopus
laevis) 109 - 1011 ?
Chú thích: (1) Có 4290 gene mã hóa protein, còn lại là RNA; (2) Vector hữu ích để chuyển gen ở thực vật; (3) Cộng với 53 gene RNA; (4) Eukaryote đa bào đầu tiên được xác định trình tự; (5) Được xác định đầy đủ trình tự vào 4/2003 bởi HGP, với tổng cộng 3.164.700.000 cặp base; và theo ước tính mới nhất công bố ngày 21/10/2004 trên tạp chí Nature, bộ gene người chúng ta chứa khoảng 20.000-25.000 gene mã hóa protein chiếm khoảng 2% toàn bộ bộ gene.
4. Kích thước DNA một số bào quan
Kích thước DNA của một số bào quan (bảng 3.4) cho thấy chúng có vẻ đơn giản và không có dấu hiệu tiến hóa rõ rệt. Nói chung, kích thước mỗi phân tử DNA ty thể của người và các động vật có vú thường nằm trong khoảng 15.000-17.000 bp; ví dụ
mtDNA người là 16.569 bp. Trong khi đó, kích thước một DNA lạp thể ở phần lớn tế bào các thực vật thường biến thiên trong khoảng 130.000 - 150.000 bp. Chẳng hạn, cpDNA ở lúa trồng (O. sativa) thuộc hai nhóm indica và japonica có kích thước tương ứng là 134.494 bp và 135.525 bp, ở lúa mỳ (Triticum aestivum) là 134.545 bp và ở ngô (Zea mays) là 140.384 bp, v.v. Còn các plasmid của một số tế bào thực vật thường có kích thước rất bé khoảng 1-2 ngàn cặp base.
Bảng 3.4 Kích thước DNA bào quan ở một số sinh vật nhân chuẩn
DNA ty thể
Số cặp
base Plasmid
Số cặp base
Người (Homo sapiens) 16.569 O. sativa (indica) 1.485 O. sativa
D. melanogaster 19.517
(japonica) 2.135
S. cerevisiae 85.779 Ngô (Zea mays) 1.913
52
Số cặp
DNA lạp thể
base Brassica 11.640
Lúa O. sativa (indica) 134.494 N. crassa (3 loại) 3.581 O. sativa (japonica) 134.525 3.675 Ngô (Zea mays) 140.384 7.050
Mía (S. officinarum)
141.182
IV. Đặc tính hóa lý của DNA
1. Biến tính và hồi tính của DNA
Một trong những đặc điểm quan trọng nhất của DNA là hai mạch đơn bổ sung của nó gắn với nhau bằng các mối liên kết hydro, vốn là lực liên kết hóa học yếu nên chúng có thể bị phân hủy dưới tác dụng của các enzyme, năng lượng... làm cho hai mạch đơn của chuỗi xoắn kép tách rời nhau, gọi là biến tính
(denaturation). Nhờ đó DNA mới có thể tái bản, các gene mới có thể biểu hiện ra các sản phẩm của mình. Mặt khác, DNA có thể phục hồi trở lại trạng thái ban đầu theo một quá trình ngược lại, gọi là hồi tính (renaturation).
Bằng thực nghiệm, người ta đã chứng minh điều đó bằng cách sử dụng các tác nhân vật lý và hóa học khác nhau. Chẳng hạn, khi đun nóng từ từ các phân tử DNA lên tới nhiệt độ gần 100oC (thường là 90-95oC), thì các liên kết hydro của chúng bị phá hủy hoàn toàn và hai sợi bổ sung tách ra. Ngược lại, khi làm nguội từ
từ dung dịch đốt nóng chứa DNA bị biến tính hoàn toàn, các sợi đơn thường cặp lại với sợi bổ sung của chúng và làm phục hồi chuỗi xoắn kép như lúc đầu. Rõ ràng đây là các quá trình có tính thuận-nghịch.
1.1. Biến tính hay sự tách hai sợi của chuỗi xoắn kép DNA
Trong khi các tỷ số G với C và A với T trong DNA của một sinh vật là cố định, thì hàm lượng GC (tỷ lệ phần trăm của G + C) có thể sai khác nhau một cách đáng kể giữa các DNA thuộc các loài khác nhau. Ở bảng 3.5 cho thấy hàm lượng GC của DNA nhiều loài sinh vật. Các trị số này biến thiên từ 22% đến 73%, và những sự khác nhau này được phản ảnh trong sự sai khác về các đặc tính của DNA.
Ở nhiệt độ vừa phải hoặc khi có mặt các tác nhân gây biến tính
53
như kiềm hay formamide, thì các phân tử DNA bị biến tính từng phần. Khi đó tại các vùng giàu cặp A-T sẽ tách từng phần trước, trong khi các vùng giàu cặp G-C vẫn giữ nguyên đặc tính xoắn kép (Hình 3.11). Điều này có thể lý giải là do mỗi cặp A-T chỉ có hai liên kết hydro hiển nhiên là kém bền hơn so với mỗi cặp G-C vốn có tới ba liên kết như thế.
Bảng 3.5 Hàm lượng tương đối (G + C) của các DNA khác nhau Nguồn DNA (G+C)
% Nguồn DNA (G+C)
%
Dictyostelium (mốc nhầy) 22 Lách chuột 44 Streptococcus pyogenes 34 Tinh trùng cá hồi 44 Vaccinia virus 36 B. subtilis 44 Bacillus cereus 37 Phage T1 46 B. megaterium 38 Escherichia coli 51 Hemophilus influenzae 39 Phage T7 51 Saccharomyces
cerevisiae 39 Phage T3 53 Tuyến ức bê 40 Neurospora crassa 54 Pseudomonas
Gan chuột (Rattus) 40
aeruginosa 68
Tinh trùng bò đực 41 Sarcina lutea 72
Streptococcus
pneumoniae 42
Micrococcus
lysodeikticus 72
Mầm lúa mỳ 43 Herpes simplex virus 72 Gan gà 43 Mycobacterium phlei 73
Nhiệt độ mà tại đó các sợi DNA bị biến tính hay tách nhau một nửa được gọi là nhiệt độ nóng chảy (melting temperature), hay Tm. Tm là điểm giữa của pha chuyển tiếp (Hình 3.13) và nó tùy thuộc vào hàm lượng GC của DNA, nghĩa là đặc trưng cho DNA mỗi loài (Hình 3.14). Ví dụ, DNA của E. coli với 50-51% GC thì có Tm là 69-
70oC (Hình 3.14). Tương tự, kết quả xử lý nhiệt đối với DNA phế cầu khuẩn Streptococcus pneumoniae và nhiệt độ nóng chảy của nó được đo bằng sự gia tăng độ hấp thụ ở 260 nm cho phép thu được đường cong nóng chảy của vi khuẩn này. Tm cho DNA này dưới những điều kiện như thế là khoảng 85oC
54
DNA soi kep gi chua bi nong c
DNA sợi đơn
Soi don DNA sợi kép
Soi kep
giau A-T thanh
ang soi don 260
220 300
Hình 3.11 Vi ảnh điện tử của DNA bị biến tính từng phần. Các búp sợi đơn (mũi tên dưới) là vùng giàu AT bị biến tính trước, trong khi
Hình 3.12 Hyperchromicity. Sự hấp thụ của một dung dịch DNA (trên trục tung) tăng lên cực đại ở 260 nm (thuộc vùng cực tím của quang phổ)
các vùng sợi kép dày hơn (mũi tên
khi ch
uỗi xoắn kép bị biến tính thành
trên 100
) vẫn còn chưa bị biến tính. cá
c sợi đơn.
50
DNA E. coli vốn
chứa 50% G-C,
50
0
50 70 90
which có Tm bằng 69oC
has a
60 70 80
Hình 3.13 Đường cong nóng chảy DNA. Tỷ lệ phần trăm hyper chromicity (ở trục tung) có thể được
dùng theo sự biến tính của DNA như là một hàm số của sự gia tăng nhiệt độ (ở trục hoành). Nhiệt độ tại điểm
Hình 3.14 Sự phụ thuộc của Tm vào hàm lượng G+C của ba DNA khác nhau. Hàm lượng GC trung bình có thể được xác định từ nhiệt độ nóng chảy của DNA. Ví dụ, đường cong bên trái nói lên một DNA có hàm
đư
lượng G+C thấp hơn so với DNA E.
giữa của ờng cong nóng chảy được gọi là Tm.
coli (đường cong ở giữa).
Cần lưu ý rằng hàm lượng tách sợi, hay nhiệt độ nóng chảy, được đo bằng sự hấp thụ của dung môi DNA ở 260 nm (Hình 3.12). Các nucleic acid hấp thụ ánh sáng ở bước sóng này do cấu trúc điện tử trong các base của chúng, nhưng khi hai sợi của DNA lại gần nhau, thì khoảng cách gần gũi của các base trên hai sợi làm giảm bớt phần nào sự hấp thụ này. Khi hai sợi tách ra thì hiện tượng này biến mất và độ hấp thụ tăng lên 30-40%. Hiện tượng này được gọi là sự dịch chuyển do thừa sắc tố (hyperchromic shift;
55
Hình 3.12) và thuật ngữ chính thức chỉ cho hiện tượng này là hyperchromicity. Sự tăng tiến độ dốc trên đường cong cho thấy các sợi giữ vững màu cho tới khi nhiệt độ tiệm cận Tm và sau đó nhanh chóng buông ra.
Hàm lượng GC của một DNA có một tác dụng đáng kể lên Tm của nó. Trên thực tế, hàm lượng GC của DNA càng cao thì Tm của nó càng cao (Hình 3.14). Tại sao như vậy? Ta nhớ lại rằng một trong những lực giữ cho hai sợi gắn với nhau là liên kết hydro, trong khi các cặp A-T chỉ có hai liên kết thì các cặp G-C có tới ba liên kết. Vì vậy hai sợi của DNA giàu GC sẽ giữ chặt hơn là hai sợi của DNA giàu AT.
Tóm lại, hàm lượng GC của một DNA có thể biến thiên từ 22% ở nấm mốc nhầy Dictyostelium đến 73% ở Mycobacterium phlei (Bảng 3.5). Điều này có thể gây một hiệu quả mạnh lên các đặc tính hóa lý của DNA, đặc biệt là lên nhiệt độ nóng chảy tăng tuyến tính với hàm lượng GC. Nhiệt độ nóng chảy (Tm) của một phân tử DNA là nhiệt độ mà tại đó hai sợi bị biến tính hay tách nhau một nửa. Ngoài ra, nồng độ ion thấp và các dung môi hữu cơ cũng thúc đẩy sự biến tính của DNA.
1.2. Sự phục hồi trạng thái nguyên thể của DNA (renaturation)
Một khi hai sợi của DNA tách ra, dưới những điều kiện thích hợp chúng có thể kết hợp trở lại và làm phục hồi trạng thái ban đầu (renaturation, annealing). Góp phần vào hiệu quả "hồi tính" này của DNA có nhiều nhân tố. Dưới đây nêu lên ba nhân tố quan trọng nhất:
1. Nhiệt độ. Nhiệt độ tốt nhất cho sự hồi tính của một DNA là khoảng 25oC dưới nhiệt độ nóng chảy của nó. Nhiệt độ này là đủ thấp để cho sự biến tính không xảy ra nữa, nhưng đủ cao để cho phép khuyếch tán nhanh và làm yếu đi liên kết không bền giữa các trình tự kết cặp nhầm và các vùng kết cặp base ngắn trong sợi. Điều này gợi ra rằng việc làm nguội nhanh theo sau sự biến tính sẽ cản trở sự hồi tính. Thật vậy, quy trình chung đảm bảo cho DNA bị biến tính dừng biến tính lại là đột ngột chuyển dung dịch DNA vào trạng thái đóng băng. Điều này được gọi là quenching.
2. Nồng độ DNA. Nồng dộ DNA trong dung dịch cũng quan trọng. Trong giới hạn hợp lý, nồng dộ DNA càng cao thì hai sợi bổ sung sẽ càng dễ dàng bắt gặp nhau trong một thời
56
gian nào đó. Nói cách khác, nồng độ càng cao thì sự hàn gắn trở lại càng nhanh.
3. Thời gian hồi tính. Rõ ràng là, thời gian cho phép hai sợi hàn gắn trở lại càng dài thì sẽ càng dễ dàng xảy ra. R.J. Britten và D.E. Kohn phát minh ra thuật ngữ, Cot, để gộp các nhân tố nồng độ DNA và thời gian. Cot (đọc là "cot") là sản phẩm của nồng độ DNA ban đầu (Co) tính theo số mole của các nucleotide trên mỗi lít và thời gian (t) tính bằng giây. Tất cảc các nhân tố khác được coi là ngang bằng nhau thì mức độ hồi tính của các sợi bổ sung trong một dung dịch DNA sẽ phụ thuộc vào Cot; cái đó gọi là đường cong Cot. Nếu ta coi tỷ lệ kết hợp lại tăng lên theo hướng đi xuống trên trục y, thế thì các đường cong đổ dốc biểu thị cho sự hồi tính các DNA.
Hình 3.15 và 3.16 (kèm theo các chú thích chi tiết) dưới đây cho thấy phản ứng tái kết hợp DNA (cho một loại DNA sợi đơn) và đường cong Cot đối với năm mẫu DNA khác nhau có các mức độ phức tạp khác nhau rất là lớn.
log Cot
p
ợ
% DNA tái kết h
0
50
Cot1/2 = 1 / k2
trong đó
k2 = hằng số tỷ lệ bậc hai Co = nồng độ DNA
t1/2 = thời gian nửa phản ứng
100
Cot1/2
Hình 3.15 Phản ứng tái kết hợp DNA hay đường cong Cot lý tưởng đối với một loại DNA sợi đơn.
Chú thích: Ở đây cho thấy mẫu DNA của E. coli. Phản ứng được biểu diễn trên đồ thị như là một sơ đồ bán-log với "log Cot" trên trục x và "tỷ lệ % DNA tái kết hợp" trên trục y (0% ở trên và 100% ở dưới). Phản ứng xảy ra theo sự vận động bậc hai lý tưởng. Cot là sản phẩm của Co (nồng độ DNA) và t (thời gian). Như vậy, nếu nồng độ DNA ổn định, trục x đơn thuần là tiến trình thời gian của phản ứng. Tiến trình phản ứng xảy ra như sau: tại thời điểm zero DNA bị biến tính thành các sợi đơn và các điều kiện đó được kết nối để thúc đẩy sự kết cặp base của DNA để cho phép sự hồi tính DNA xảy ra; tại một nửa thời gian của phản ứng (t1/2) thì có 50% DNA được tái kết hợp. Điểm này là Cot1/2 của phản ứng mà nó xác định tỷ lệ nghịch của hằng số tỷ lệ tái kết hợp bậc hai, k2. Nói
57
cách khác, hằng số tỷ lệ đối với một mẫu DNA có thể được xác định về mặt thực nghiệm bằng cách đo Cot1/2 của phản ứng. Hằng số tỷ lệ sau đó sẽ cung cấp độ phức tạp của DNA bằng cách so sánh nó với các hằng số tỷ lệ của các mẫu DNA khác có độ phức tạp đã biết.
Độ phức tạp được biểu hiện như là số lượng cặp base (bp) 101 106 102 103 105 1010 109 108 100 104 107
1 2 34 5
Cot1/2
10-5 100 10-4 10-3 10-1 104 103 102 10-6 10-2 101
Cot
Hình 3.16 Đường cong Cot đối với năm mẫu DNA khác nhau có các độ phức tạp rất khác nhau sau đây:
1- poly(dA)-poly(dT); 2- DNA vệ tinh của người được tinh chiết; 3- DNA phage T4; 4- DNA bộ gene E. coli; và
5- DNA bản sao đơn của người được tinh chiết.
Chú thích: Mỗi DNA tái kết hợp với một tỷ lệ nhất định, phụ thuộc vào mức độ phức tạp đặc trưng riêng của nó (xem các trị số về độ phức tạp ở hàng ngang phía trên). Mẫu 1 là trình tự đơn giản nhất. Nó là DNA sợi kép gồm các homopolymer poly(dA) và poly(dT) cặp với nhau. Theo định nghĩa có tính chất quy ước, nó có độ phức tạp là "một" bởi vì nó bao gồm các đoạn lặp của chỉ các cặp A-T mà thôi. Các mẫu DNA còn lại (2-5) có độ phức tạp tăng lên cho đến DNA bản sao đơn của người được tinh chiết, vốn cấu thành hầu hết bộ gene người và có độ phức tạp của hơn một tỷ (>109) cặp base.
2. Ứng dụng trong lai phân tử
Người ta lợi dụng khả năng nói trên của DNA để tạo ra các phân tử DNA lai nhân tạo bằng cách làm lạnh từ từ hỗn hợp các DNA biến tính từ hai loài khác nhau. Kỹ thuật lai phân tử (molecular hybridization; Hình 3.17) này đã được ứng dụng rộng rãi để xác định mức độ tương đồng DNA của các nhóm phân loại khác nhau. Trên nguyên tắc, nếu mức độ tương đồng càng lớn thì số lượng các đoạn lai càng lớn và ngược lại. Ví dụ, các thực nghiệm cho thấy có khoảng 25% tổng số DNA người và chuột có thể lai với
58
nhau (Watson et al 1987). Thông thường mức độ lai được xác định bằng các phương pháp sắc ký hoặc ly tâm, trong đó một loại DNA được đánh dấu bằng đồng vị phóng xạ. Hiện giờ các kỹ thuật này được áp dụng khá rộng rãi trong các nghiên cứu sinh học phân tử
cũng như trong các lĩnh vực điều tra hình sự hoặc phát hiện sớm một số bệnh phân tử trước khi các triệu chứng xuất hiện để điều trị kịp thời.
Biến tính / Hồi tính
Lai hoá Nucleic Acid
Biến tính của DNA
Hồi tính của DNA
Chuỗi lai DNA-RNA
Lai hoá
DNA-RNA
Hình 3.17 Biến tính và hồi tính của DNA (trái) và lai nucleic acid. Gel
Màng lọc
bằng nylon
Mẩu dò
Trình tự đích
Mẩu dò DNA
Hình 3.18 Sơ đồ minh hoạ việc sử dụng mẫu dò DNA để tìm đoạn đích. Tóm lại, theo nghĩa rộng, lai phân tử hay lai nucleic acid được
59
hiểu là sự tương tác giữa các sợi nucleic acid bổ sung. Nó có thể xảy ra giữa hai sợi DNA, hoặc giữa các sợi DNA và RNA, hoặc giữa hai sợi RNA, và đó chính là cơ sở của nhiều kỹ thuật, chẳng hạn như: lai một mẫu dò có đánh dấu đồng vị phóng xạ (radioactive probe) để lọc ra DNA hay RNA bám vào màng lai là một trong những thí nghiệm cho nhiều thông tin bổ ích nhất được tiến hành trong di truyền học phân tử. Hai kiểu cơ bản của lai phân tử là phương pháp lai Southern (Southern blots) và phương pháp lai Northern (Northern blots). Trong đó, kiểu đầu là lai bằng một mẩu dò để phát hiện, định lượng một phân tử DNA xác định; còn kiểu sau dùng để phát hiện, định lượng một phân tử RNA. Mẫu dò
(probe) là các công cụ sơ cấp được dùng để xác định các trình tự bổ sung cần quan tâm hay trình tự đích (target sequence). Đó là một nucleic acid sợi đơn thường được đánh dấu phóng xạ và được dùng để xác định một trình tự nucleic acid bổ sung bám trên màng lọc nitrocellulose hay màng lai bằng nylon (Hình 3.18).
V. Chức năng của DNA
Ngày nay, chúng ta đều biết rõ rằng DNA hay bộ gene của tất cả các sinh vật nói chung có chức năng chính là mang đầy đủ toàn bộ thông tin di truyền (genetic information) đặc trưng cho từng loài. Thông tin di truyền này được ghi lại dưới dạng mật mã, gọi là mã di truyền (genetic code), và chứa đựng trong các gene cấu trúc
(structural genes) cũng như các yếu tố kiểm soát di truyền nhằm điều khiển mọi hoạt động sinh trưởng, phân chia và biệt hoá của tế bào (chương 6).
Hơn nữa, DNA hay vật chất di truyền nói chung đều có khả năng tự sao chép một cách chính xác bản thân nó trong một quá trình gọi là tái bản (replication) - cơ sở của sự tự nhân đôi nhiễm sắc thể và, do đó, là cơ sở của sự phân chia tế bào (mà thực chất là sự phân chia hay truyền đạt vật chất di truyền; chương 5). Đó còn là các quá trình hoạt động và điều hoà sự biểu hiện của các gene trong bộ
gene - phiên mã (transcription) và dịch mã (translation) - tạo ra các phân tử (RNA và protein) tham gia vào các cấu trúc và hoạt động sống cơ sở của tế bào (chương 6). Nhờ đó mà con cái sinh ra thường giống với cha mẹ, mỗi loài duy trì sự ổn định tương đối bộ
gene của mình và, nói rộng ra là, nhờ đó mà sự sống được duy trì một cách liên tục kể từ khi sự sống bắt đầu hình thành trên trái đất cách đây chừng ba tỷ rưỡi năm.
Mặt khác, DNA hay vật chất di truyền nói chung có khả năng
60
phát sinh các biến đổi trong quá trình phát triển cá thể và sinh sản của sinh vật. Đó là các đột biến gene (gene mutations) gây ra bởi tác động của các tác nhân vật lý và hoá học khác nhau, hoặc do chính các sai sót trong quá trình tái bản, hoặc do sự dịch chuyển vị trí của bản thân các gene trong bộ gene - các yếu tố di truyền vận động
(transposable genetic elements) hay còn gọi là các gene nhảy (jumping genes) - gây sự biến động của bộ gene và sự biến đổi ở kiểu hình. Ngoài ra, đó còn là các quá trình tái tổ hợp di truyền (genetic recombination) tạo nên các biến dị tổ hợp phong phú và đa
dạng trong quá trình sinh sản của sinh vật. Chính các quá trình biến đổi đa dạng này đã không ngừng tạo nên các nguồn biến dị di truyền sơ cấp và thứ cấp cho sự chọn lọc và tiến hoá của sinh giới (chương 5).
Các chức năng và cơ chế truyền đạt thông tin di truyền chính yếu của DNA được mô tả tóm tắt như ở hình 3.19 dưới đây, và sẽ được thảo luận chi tiết trong các chương kế tiếp.
Hình 3.19 Giáo lý trung tâm của sinh học phân tử.
Nói chung, trong một bộ gene sinh vật có chứa các thành phần chức năng khác nhau thuộc hai nhóm chính sau đây: + Nhóm thứ nhất bao gồm các gene, tức là các thành phần của bộ gene được biểu hiện thành các sản phẩm cuối cùng là RNA hay protein, đó là: (i) Các gene cấu trúc mã hoá các RNA thông tin, quy định các protein khác nhau, gọi là các gene mã hoá protein (protein coding genes); (ii) Các gene mã hoá các RNA vận chuyển; (iii) Các gene mã hoá các RNA ribosome; (iv) Đối với các tế bào eukaryote, còn có các gene mã hoá các RNA chức năng đặc trưng khác như: iRNA, snRNA, snoRNA, scRNA, gRNA, RNA của các enzyme
61
splicing và telomerase ... (xem chương 4).
+ Nhóm thứ hai bao gồm các yếu tố không phải gene, tức là các thành phần của bộ gene không được biểu hiện thành các sản phẩm mà chỉ đóng vai trò là các tín hiệu điều hoà hoặc kiểm soát hoạt động của bộ gene hoặc các gene. Nhóm này bao gồm nhiều vùng DNA đặc thù khác nhau, chẳng hạn: (i) Các trình tự điều hoà hoạt động tái bản, như: khởi điểm tái bản (origin of replication = ori) và kết thúc tái bản (terminator = ter); (ii) Các yếu tố kiểm soát phiên mã, như: vùng khởi động (promoter region), yếu tố chỉ huy trong các operon ở prokaryote (operator, các yếu tố tăng cường (enhancer) hoặc yếu tố gây bất hoạt gene (silencer) ở eukaryote, ...; (iii) Các yếu tố kiểm soát dịch mã, ví dụ trình tự Shine-Dalgarno, hoặc các vùng không được dịch mã nằm trước và sau mRNA - sản phẩm gene mã hoá protein - gọi là 5'-UTR và 3'-UTR; (iv) Các đoạn đệm giữa các gene (intergenic spacer); (v) Các intron - các đoạn không mã hoá protein (phân bố xen kẻ với các đoạn mã hoá gọi là các exon) của các gene phân đoạn ở eukaryote, ở các vi khuẩn cổ và một số virus lây nhiễm ở sinh vật bậc cao; (vi) Các gene giả (pseudogene); (vii) Các trình tự DNA lặp lại (repetitive DNA) khác nhau, kể cả các DNA tâm động (centromere) và DNA đầu mút (telomere) của các nhiễm sắc thể eukaryote; v.v.
Như đã đề cập trước đây, trong khi mật độ phân bố các gene trong bộ gene của các prokaryote và các virus là hầu như dày đặc, thì ở các eukaryote mà đặc biệt là ở các sinh vật bậc cao, tỷ lệ này là tương đối nhỏ và thay vào đó, phần lớn bộ gene chứa các vùng DNA thuộc nhóm thứ hai nói trên.
Chẳng hạn, bộ gene người (human genome) có các đặc điểm sau:
(1) Bộ gene nhân (nuclear):
- bộ gene đơn bội có khoảng 3,2 tỷ cặp base;
- chứa khoảng 20.000 - 25.000 gene, chiếm khoảng 2% toàn bộ bộ gene (số liệu ước tính mới nhất công bố từ tạp chí Nature ra ngày 21/10/2004; chỉ trước đó không lâu con số này là ~30.000 đến 40.000);
- hầu hết các gene trong bộ gene đơn bội đều ở dạng các bản sao đơn;
- các gene đều có chứa từ 1 đến hơn 75 exon;
- các gene sai khác nhau về chiều dài, biến thiên từ dưới 100
62
đến trên 2.300.000 cặp base;
- các trình tự Alu (Alu sequence) có mặt khắp bộ gene. (2) Bộ gene ty thể (mitochondrial):
- bộ gene mạch vòng với 16.569 cặp base (cũng có một số liệu khác cho là 16.571 cặp base);
- chứa dưới 40 gene.
Câu hỏi và Bài tập
1. Liệt kê các đặc điểm của mô hình DNA dạng B và từ mô hình này, hãy cho biết: Dựa vào đâu Watson đã tiên đoán một cách tài tình và chính xác khả năng tất yếu phải xảy ra kiểu tái bản bán bảo toàn của DNA?
2. (a) Về mặt toán học, mô hình Watson-Crick lý giải một cách thoả đáng các kết quả của Chargaff ra sao? (b) Hãy chỉ ra những điểm giống và khác nhau giữa DNA dạng B và DNA dạng Z, và mối quan hệ giữa chúng.
3. Anh (chị) hãy viết một tổng luận về chặng đường ra đời và phát triển của sinh học phân tử trong hơn 50 năm qua kể từ ngày Watson và Crick khám phá ra mô hình cấu trúc chuỗi xoắn kép DNA..
4. Đối với DNA sợi kép, chỉ cần biết trước hàm lượng của một loại nucleotide ta có thể xác định được hàm lượng của các loại còn lại. Tại sao? Hãy vận dụng các quy tắc Chargaff để tính số lượng từng loại nucleotide trong bộ gene người và vi khuẩn E. coli (Biết rằng tỷ lệ A/G của DNA người là 1,52; tỷ lệ phần trăm G + C của E. coli là 51%; về tổng số nucleotide của mỗi bộ gene cần tra cứu ở
Bảng 3.3).
5. Anh (chị) hãy phát biểu những ý tưởng và hiểu biết của mình dựa trên các cặp base của mô hình Watson-Crick.
6. (a) Tại sao trong cấu trúc DNA cũng như các cơ chế di truyền ở cấp độ phân tử vốn quan trọng như vậy nhưng chỉ có hai kiểu kết cặp base căn bản: A-T và G-C? (b) Có thể xảy ra kiểu kết cặp base nào khác nữa hay không? Nếu có, hậu quả là gì? Giải thích và cho ví dụ.
7. Thế nào là biến tính và hồi tính của DNA? Giải thích và cho biết ý nghĩa sinh học cũng như ứng dụng của các hiện tượng này.
63
8. (a) Phân tích mối quan hệ giữa kích thước bộ gene của các sinh vật và tính phức tạp về mặt tiến hóa của chúng; (b) Nghịch lý giá trị-C là gì? Phân tích khái niệm này và cho ví dụ. 9. Phân tích các mối tương tác trong các cấu trúc bậc hai và bậc ba của các nucleic acid, và nêu các ý nghĩa của chúng. 10. Dựa vào các kiến thức liên quan đến cấu trúc cặp G-C, anh (chị) hãy thể hiện những hiểu biết có thể được của mình về cấu trúc này.
Tài liệu Tham khảo
Tiếng Việt
Hoàng Trọng Phán. 1995. Một số vấn đề về Di truyền học hiện đại (Tài liệu BDTX giáo viên THPT chu kỳ 1993-1996). Trường ĐHSP Huế.
Hoàng Trọng Phán. 1997. Di truyền học Phân tử (tái bản). Trung tâm ĐTTX Đại học Huế - NXB Giáo Dục.
Hoàng Văn Tiến (chủ biên), Lê Khắc Thận, Lê Doãn Diên. 1997. Sinh hoá học với cơ sở khoa học của công nghệ gene. NXB Nông Nghiệp, Hà Nội.
Nguyễn Tiến Thắng, Nguyễn Đình Huyên. 1998. Giáo trình Sinh hoá hiện đại. NXB Giáo Dục.
Watson JD. 1968. Chuỗi xoắn kép (bản Việt dịch của Lê Đình Lương và Thái Doãn Tĩnh). NXB Khoa học và Kỹ thuật, Hà Nội, 1984.
Tiếng Anh
Benz R. (Ed.). 2004. Bacterial and Eukaryotic Porins: Structure, Function, Mechanism. John Wiley & Sons, Inc., UK. Blackburn G.M., Gait M.J. (Eds., 1996): Nucleic Acids in Chemistry and Biology. Oxford University Press, Oxford.
Bolsover SR, Hyams JS, Shephard EA, White HA, Wiedemann CG. 2003. Cell Biology: A Short Course, 2nd ed. John Wiley & Sons, Inc., UK.
Campbell PN, Smith AD, Peters TJ. 2005. Biochemistry Illustrated: Biochemistry and molecular biology in the post-genomic era. 5th ed., Elsevier Ltd, Edinburgh - London - New York - Oxford - Philadelphia - St Louis - Syney - Toronto.
64
Horton, Moran, Ochs, Rawn, Scrimgeour. 2002. Principles of Biochemistry. Prentice Hall, Inc.
Lehninger L. et al. (1993): Principles of Biochemistry. Worth Publishers, New York.
Mulligan ME. 2002.
http://www.mun.ca/biochem/cuorses/3017/Topics/bases.html Nelson DL and Cox MM. 2000. Lehninger Principles of Biochemistry, 3rd ed., Worth Publishers, New York. O'Brien SJ, Menninger J, Nash WG. 2006. Atlas of Mammalian Chromosomes. John Wiley & Sons, Inc., UK.
Stein CA and Krieg AM (Eds), March 1998. Applied Antisense Oligonucleotide Technology. John Wiley & Sons, Inc. / BIOS Scientific Publishers Ltd, UK.
Stryer L. (1981): Biochemistry. W.-H. Freeman and Co., San Francisco.
Twyman RM. 1998. Advanced Molecular Biology. BIOS Scientific Publishers Ltd/ Springer-Verlag Singapore Pte Ltd.
Watson JD, Tooze J., Kurtz DT. 1983. Recombinant DNA (A short course). Scientific American Books, W.H. Freeman & Co., New York.
Watson JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AM. 1987. Molecular Biology of the Gene. 4th ed, Benjamin/Cummings Publishing Company, Inc, Menlo Park, CA.
Weaver RF, Hedrick PW. 1997. Genetics. 3rd ed, McGraw-Hill Companies, Inc. Wm.C.Browm Publishers, Dubuque, IA.
61
Chương 4
Cấu trúc và Chức năng của các RNA
Trên nguyên tắc, các RNA được cấu tạo từ các đơn phân là các ribonucleotide; các ribonucleotide này nối kết với nhau bằng các liên kết 3',5'-phosphodiester tạo thành các chuỗi polyribonucleotide - cấu trúc sơ cấp của các phân tử RNA (như đã đề cập ở chương 2). Đường pentose đặc trưng của RNA là ribose, còn thành phần base, ngoài bốn loại cơ bản adenine (A), uracil (U), guanine (G) và cytosine (C), còn phát hiện khá nhiều dạng base hiếm có mặt chủ yếu trong các tRNA (xem mục III).
Có ba loại phân tử RNA cơ bản tham gia vào quá trình sinh tổng hợp protein của các tế bào, đó là: RNA thông tin (messenger RNA, viết tắt: mRNA), RNA vận chuyển (transfer RNA, viết tắt: tRNA), và RNA ribosome (ribosomal RNA, viết tắt: rRNA).
Nói chung, các phân tử RNA có kích thước bé hơn các phân tử DNA ở bất kỳ sinh vật cụ thể nào. Các phân tử RNA có thể là sợi đơn hoặc sợi kép, mạch thẳng hoặc mạch vòng nhưng phổ biến là dạng sợi đơn, thẳng (nhưng không thấy có các phân tử RNA sợi kép, vòng nào được mô tả). Loại RNA có hàm lượng cao nhất trong các tế bào là rRNA.
Ở Bảng 4.1 cho thấy hàm lượng tương đối (%) và kích thước (trọng lượng phân tử - TLPT và số nucleotide) của các phân tử RNA ở vi khuẩn Escherichia coli (E. coli).
Bảng 4.1 Các phân tử RNA ở E. coli
Loại RNA Chức năng (%) TLPT Số nucleotide mRNA Mã hoá các protein 5 Biến thiên Biến thiên tRNA Mang amino acid 15 2,5.101 ~ 75 rRNA 5S Thành phần ribosome 80 3,6.101 120 16S Thành phần ribosome 0,55.103 1542
23S Thành phần ribosome 1,2.103 2904
Ngoài ba lớp RNA chính (rRNA, tRNA và mRNA) vốn cũng có mặt trong các prokaryote, các tế bào eukaryote còn có các lớp RNA khác, như: (i) RNA dị nhân, hnRNA (heterogenous nuclear RNA), với kích thước sai biệt nhau rất lớn, chúng là tiền thân của các mRNA trưởng thành sau này; (ii) các RNA nhân kích thước bé, snRNA (small nuclear RNA), với các loại như U1, U2, U3, U4, U5, U6, U7,U8, U9, U10...trong đó sáu loại đầu
62
có vai trò quan trọng trong xử lý pre-mRNA của các gene phân đoạn; và (iii) RNA tế bào chất, scRNA (small cytoplasmic RNA) 7SL cần cho tổng hợp các protein chế tiết và bám vào màng; và một vài RNA khác nữa được giới thiệu ở Bảng 4.2. Các enzyme chịu trách nhiệm cho tổng hợp các RNA này sẽ được trình bày ở chương 6.
Bảng 4.2 trình bày khái quát về các lớp RNA có chức năng chính yếu và thứ yếu trong các tế bào.
Bảng 4.2 Các lớp RNA chức năng chính và phụ
Lớp RNA Chức năng
1. Các lớp chính
mRNA RNA được phiên mã từ các gene mã hoá protein, mang thông tin cho dịch mã. Một số bản sao tương tự
mRNA không được dịch mã, ví dụ XIST, H19 do cơ
chế in dấu bộ gene bố mẹ (parental imprinting).
hnRNA mRNA trước khi cắt-nối. Đó là các bản sao chưa được
(heterogenous nuclear RNA)
sửa đổi của các gene eukaryote; sở dĩ gọi như vậy bởi vì tính đa dạng lớn về kích thước của nó so với tRNA và rRNA.
tRNA Phân tử thích ứng (adaptor) thực hiện việc dịch mã. tRNA cũng làm mồi cho tái bản DNA trong sự tái
bản của các retrovirus.
rRNA Thành phần cấu trúc chính của các ribosome, cần cho quá trình tổng hợp protein của tế bào.
2. Các lớp phụ
iRNA
(initiator RNA)
Các trình tự RNA ngắn được dùng làm mồi cho sự tổng hợp DNA ở sợi ra chậm (xem tái bản, chương 5).
snRNA Các phân tử RNA trọng lượng phân tử thấp phát hiện
(small nuclear
RNA) hay U-RNA (uridine-rich RNA) snoRNA
(small nucleolar RNA)
scRNA
(small cytoplasmic RNA)
được trong dịch nhân, là thành phần của các enzyme cắt bỏ các intron và các phản ứng xử lý (processing) khác; chúng chứa nhiều gốc uridine được sửa đổi.
Các phân tử RNA trọng lượng phân tử thấp phát hiện được trong hạch nhân, có thể tham gia vào quá trình xử lý rRNA (RNA processing).
Các phân tử RNA trọng lượng phân tử thấp phát hiện được trong tế bào chất với các chức năng khác nhau. Ví dụ đó là RNA 7S vốn là thành phần của tiểu phần nhận biết tín hiệu và pRNA (prosomal RNA), một RNA bé kết hợp với khoảng 20 protein và được bọc gói với mRNA trong mRNP hay thể thông tin
63
(informosome) vốn có tác dụng điều hoà sự biểu
hiện của gene.
RNA telomerase Một RNA nhân có chứa khuôn cho các đoạn lặp telomere và là thành phần của enzyme telomerase
(xem chương 5).
gRNA (guide RNA) Một loại RNA được tổng hợp trong các roi động (kinetoplasts) ở Trypanosoma; nó cung cấp khuôn
cho biên tập RNA (editing RNA).
antisense RNA RNA ngược nghĩa (antisense RNA) bổ sung với mRNA và có thể tạo thành một sợi đôi với nó để kìm hãm
việc tổng hợp protein. Loại RNA này thấy có trong
nhiều hệ thống, nhưng rất phổ biến ở vi khuẩn; và
cũng được gọi là RNA bổ sung gây nhiễu mRNA.
Các Ribozyme Các phân tử RNA mà có thể xúc tác cho các phản ứng hoá học, các enzyme chứa RNA (RNA enzymes).
Thông thường nó có hoạt tính tự xúc tác (ví dụ các
intron tự cắt = self-splicing introns), nhưng một
ribonuclease P là một chất xúc tác đích thực (ví dụ
xử lý tRNA: tRNA processing). Các RNA khác hoạt
động hài hoà với các protein, ví dụ MRP
endonuclease trong tái bản DNA ty thể.
I. Cấu trúc và chức năng của các RNA thông tin (mRNA)
Trong nhân các tế bào eukaryote có các RNA nhân kích thước lớn và sai khác nhau rất lớn gọi là hnRNA (heterogenous nuclear RNA) vốn là tiền thân của các mRNA, các RNA nhân kích thước bé snRNA (small nuclear RNA) có mặt trong thành phần của các enzyme splicing, và các RNA tế bào chất kích thước bé scRNA (small cytoplasmic RNA).
Bảng 4.3 Độ phức tạp của các lớp mRNA trong tế bào động vật có vú
Lớp phong phú
Độ phong phú (số bản sao/ tế bào)
Số lượng mRNA
khác nhau Tổng
cao 12.000 9 108.000 trung gian 300 700 210.000 thấp (hiếm) 15 11.500 172.500 Cộng 12.209 490.500
Một tế bào eukaryote điển hình chứa chừng ba lớp mRNA phong phú được trình bày ở Bảng 4.3. Thật vậy, trong các tế bào động vật có vú, một vài loại mRNA thì hết sức phong phú, trong khi đó hầu như mức độ phức
64
tạp của mRNA (số lượng loại mRNA khác nhau) được đại diện bởi các mRNA hiếm. Một điểm cần chú ý là sự biểu hiện của một gene là tỷ lệ với độ phong phú của loại RNA tương ứng (một gene biểu hiện càng mạnh khi số bản sao của nó trong tế bào càng lớn).
1. Chức năng của các mRNA
Các mRNA là loại RNA quan trọng nhất được dùng làm khuôn trực tiếp cho quá trình tổng hợp các chuỗi polypeptide trong tế bào chất.
2. Cấu trúc của các mRNA
Nhìn chung, các mRNA có cấu trúc mạch thẳng, với kích thước khác nhau và đều có ba phần chính như sau:
5'-UTR ׀ ←vùng mã hóa → ׀3'-UTR
(i) Vùng dẫn đầu (5'UTR) không được dịch mã nhưng có cấu trúc cần thiết cho sự bám vào của tiểu đơn vị ribosome bé (Hình 4.1).
5’
Trình tự Shine-Dalgarno (SD) PuPuPuPuPuPuPuPu
codon khởi đầu
AUG
vùng được dịch mã
[A]
3’
Chóp
AAU
codon kết thúc
codon khởi đầu
5’5’ UTRAUG m7Gppp
vùng được dịch mã
UGA
3’ UTR
[B]
codon kết thúc
AAUAAA 3’
(AAAA)n
đuôi poly(A)
Hình 4.1 Cấu trúc của mRNA prokaryote (A) và mRNA eukaryote (B). Ở cấu trúc mRNA prokaryote cho thấy: (i) vùng 5'-UTR chứa trình tự Shine Dalgarno (SD, gồm 8 base purine), vị trí tương tác với vùng đặc thù giàu pyrimidine của rRNA 16S trong tiểu đơn vị ribosome bé để khởi đầu tổng hợp protein; (ii) vùng được dịch mã được giới hạn bởi codon khởi đầu và codon kết thúc; và (iii) vùng 3'-UTR nằm sau codon kết thúc. Ở cấu trúc mRNA eukaryote cho thấy rõ "mũ" m7Gppp ở đầu mút 5' và đuôi poly(A) ở đầu 3'.
65
(ii) Vùng mã hoá (coding region) nằm kề sau vùng 5'-UTR; nó mang thông tin cấu trúc của một chuỗi polypeptide, nếu là mRNA của eukaryote (monocistronic mRNA) hoặc mang thông tin của nhiều polypeptide khác nhau và cách nhau bởi các đoạn đệm không được dịch mã, nếu là mRNA prokaryote (polycistronic mRNA).
(iii) Vùng kéo sau (3'-UTR) nằm ở đuôi mRNA, không được dịch mã. Ở hình 4.1 cho thấy những điểm khác nhau trong cấu trúc của các mRNA ở prokaryote và eukaryote, và hình 4.2 cho thấy cấu trúc "mũ" đặc trưng có mặt ở đầu 5' của tất cả các mRNA trưởng thành ở eukaryote . Methyl hoá cap 0
Structure of the 5’ cap
Cấu trúc của mũ 5'
(7-methyl guanosine = 7mG)
7mG = 7-methyl guanosine
Liên kết triphosphate
Triphosphate linkage
Methyl hoá 2'-ribose Methyl hoá cap 1
2’ ribose methylations
Methyl hoá cap 2
Hình 4.2 Cấu trúc của "mũ" (5' cap) có mặt ở tất cả các mRNA eukaryote. 3. Sơ lược cấu trúc gene phân đoạn eukaryote và sự sửa đổi sau phiên mã
Như đã đề cập, trừ mRNA prokaryote ra, tất cả các RNA còn lại dù ở pro- hay eukaryote đều phải trải qua quá trình sửa đổi sau phiên mã với rất nhiều cơ chế tinh vi và phức tạp khác nhau để tạo ra các RNA trưởng thành tham gia vào quá trình dịch mã. Để có cái nhìn hệ thống, ở đây ta hãy tìm hiểu đôi nét về cấu trúc gene quan trọng nhất ở các eukaryote, các gene mã hoá protein và sự xử lý sau phiên mã các bản sao sơ cấp của chúng. Vấn đề
này sẽ được đề cập chi tiết hơn ở chương 6.
* Về cấu trúc của các gene mã hoá protein ở eukaryote Hầu hết các gene mã hoá protein ở eukaryote là các gene phân đoạn (split genes), nghĩa là trong vùng mã hoá protein của chúng bao gồm các đoạn mã hoá (gọi là các exon) nằm xen kẽ với các đoạn không mã hoá (gọi
66
là các intron). Sau khi phiên mã, các intron trong bản sao pre-mRNA của các gene này phải được loại bỏ ngay trong nhân cùng với một số sự kiện quan trọng khác. Hình 4.3 cho thấy cấu trúc của một gene điển hình ở eukaryote và một số ví dụ về các gene mã hoá protein trong bộ gene người.
(A) cấu trúc gene phân đoạn
vùng khởi động (promoter)
+1
các exon (các vùng trong hộp)
các intron (giữa các exon) vùng được phiên mã
mRNA trưởng thành
5’ 3’
vùng được dịch mã
(B) cấu trúc của các gene phân đoạn khác nhau
histone
toàn bộ = 400 bp; exon = 400 bp
β-globin
toàn bộ = 1.660 bp; các exon = 990 bp
HGPRT
(HPRT)
nhân tố VIII
toàn bộ = 42.830 bp; các exon = 1263 bp toàn bộ = ~186.000 bp; các exon = ~9,000 bp
Hình 4.3 (A) Cấu trúc của một gene mã hoá protein điển hình ở eukaryote và mRNA tương ứng của nó. (B) Minh hoạ cấu trúc một số gene mã hoá protein trong bộ gene người. Ở đây cho thấy một vài gene như gene histone chẳng hạn là không có các intron; còn đại bộ phận gene đều có chứa intron, ví dụ: gene -globin có ba exon và hai intron; gene mã hoá hypoxanthine-guanine phosphoribosyl transferase (HGPRT hoặc HPRT) có chín exon và lớn hơn gene histone trên 100 lần, tuy nhiên mRNA của nó chỉ lớn gấp chừng ba lần mRNA histone (chiều dài toàn bộ các exon là 1.263 bp); và gene của nhân tố VIII gây đông máu có quá nhiều intron (được biểu thị bằng các đường kẻ đứng mảnh).
67
* Gắn thêm "mũ" m7Gppp và đuôi poly(A) Để trở thành mRNA trưởng thành trước khi đi ra tế bào chất làm khuôn cho dịch mã, tất cả các pre-mRNA của các gene mã hóa protein của eukaryote đều trải qua hai sự kiện chính yếu trong nhân: (i) Lắp thêm vào đầu 5' một cái "mũ" 7-methylguanosinetriphosphate (m7Gppp cap; Hình 4.2); và (ii) gắn thêm một cái đuôi poly(A) dài khoảng 150 - 200 base ở đầu 3'; ngoại trừ các mRNA của histone là không có đuôi poly(A). Đuôi poly(A)-3' và cả "mũ"-5' có chức năng bảo vệ mRNA khỏi bị sớm thoái hoá, và trong nhiều trường hợp đuôi poly(A) còn kích thích sự dịch mã. Đối với các gene mã hóa protein không có các intron, ví dụ các gene histone, quá trình hoàn thiện mRNA kết thúc tại đây.
(a) (b) (c)
Hình 4.4 (a-b) Vi ảnh điện tử và sơ đồ minh hoạ sự lai hoá giữa mRNA ovalbumin trưởng thành được đánh dấu với sợi khuôn của gene ovalbumin thuộc DNA bị biến tính. Sự kết cặp bổ sung tạo thành chuỗi xoắn kép lai RNA DNA được biểu thị bằng các đoạn mã hoá L và 1-7. Các vùng ký hiệu A -G là các intron của sợi khuôn gene, do không có vùng bổ sung tương ứng trên mRNA để kết cặp nên chúng xuất hiện dưới dạng các vòng. (c) Cấu trúc của gene ovalbumin, gồm đoạn mã hoá "leader" (L) với các exon 1-7 (hàng trên) và số lượng cặp base tương ứng (hàng dưới); xen kẽ giữa chúng là các intron.
* Loại bỏ các intron và nối các exon
Đối với sản phẩm phiên mã sơ cấp của các gene phân đoạn (pre mRNA), ngoài hai sự kiện chung nói trên còn có các quá trình loại bỏ các intron và nối các exon với nhau gọi là splicing hay xử lý RNA (RNA processing). Ví dụ, gene ovalbumin gồm bảy intron xen kẻ giữa tám exon có độ dài 7.700 cặp base đã được E. Chambon phân tích trình tự đầy đủ vào năm 1981 (Hình 4.4). Sau khi enzyme splicing cắt bỏ các intron và nối
68
tất cả các exon trong một quá trình gọi là xử lý RNA (RNA processing) thì mRNA trưởng thành có vùng mã hóa protein dài 1.872 base (hình 4.5).
(d)
Hình 4.5 Phiên mã gene ovalbumin và sự tạo thành mRNA trưởng thành.
Hình 4.6 Một mô hình về cơ chế cắt-nối trong quá trình xử lý pre-mRNA.
Có hai sự kiện chính liên quan cơ chế cắt-nối (splicing) trong quá trình xử lý pre-mRNA được tóm tắt như sau (về chi tiết, xem chương 6): (1) Ở
69
hai đầu mút của mỗi intron có hai nucleotide rất ổn định, đó là 5'- GU......AG-3'; và (2) Ở một số snRNA có mặt trong thành phần của phức hợp enzyme cắt-nối (spliceosome) cũng có các trình tự dinucleotide bổ sung với các trình tự chuẩn trong intron. Các trình tự này của snRNA tương tác với các đầu mút intron, kéo chúng xích lại gần nhau tạo ra cấu trúc hình vòng. Nhờ đó enzyme tiến hành loại bỏ intron và nối các exon lại với nhau; và cuối cùng, tạo ra phân tử mRNA trưởng thành (Hình 4.6).
II. Cấu trúc và chức năng của các RNA vận chuyển (tRNA) 1. Chức năng của các tRNA
Mỗi phân tử tRNA có hai chức năng chính là mang amino acid đã được hoạt hoá và đi đến phức hệ "ribosome-mRNA" để tiến hành việc đọc dịch mã cho một codon cụ thể của mRNA.
2. Thành phần hoá học của các tRNA
Trong thành phần nucleotide của các tRNA có khá nhiều base chuẩn bị biến đổi thành các base sửa đổi nhờ hoạt động xúc tác của các enzyme sau phiên mã. Các base này (còn gọi là các base hiếm) tập trung chủ yếu ở các vòng thân (stem loops) như: 5',6'-dihydrouridine (DHU), inosine (I), ribothymidine (T), pseudouridine (Ψ) v.v. (Hình 4.7A).
Hình 4.7A Các base hiếm có mặt trong RNA, chủ yếu là các tRNA. 3. Cấu trúc của các tRNA
Có 86 tRNA ở E. coli. Hầu hết các tRNA có khoảng 75-80 nucleotide và có cấu trúc bậc hai mở rộng do các tương tác cặp base (A-U và G-C) ở một số đoạn của chúng (Hình 4.8) cũng như cấu trúc bậc ba (không phải dạng siêu xoắn, mà nó có kiểu uốn gập thêm nữa trong không gian ba
70
chiều). Đây là kiểu cấu trúc "lá ba thuỳ" gọn nhẹ và vững chắc phù hợp với các chức năng khác nhau của các tRNA.
Nói chung, các phân tử tRNA thường rất giống nhau ở nhiều đoạn và khác nhau chủ yếu ở bộ ba đối mã (anticodon). Cần lưu ý rằng, base hiếm Inosine (I) có mặt ở vị trí 5' của anticodon trong một số phân tử tRNA có thể kết cặp linh hoạt với một trong các base ở vị trí 3' (C, U hoặc A) của các codon đồng nghĩa trong mRNA (Hình 4.7B).
Hình 4.7B Base hiếm Inosine ở vị trí 5' của anticodon trong một số tRNA có thể kết cặp với một trong các base (C, U hoặc A) ở vị trí 3' của các codon đồng nghĩa trong mRNA.
Mỗi tRNA thường có 3-4 vòng trên thân (tính từ đầu 5') với chức năng khác nhau như sau:
(i) vòng DHU nhận biết aminoacyl-tRNA synthetase; (ii) vòng anticodon đọc mã trên mRNA bằng sự kết cặp anticodon codon (theo nguyên tắc bổ sung nhưng có sự linh hoạt; xem chương 6); (iii) vòng "phụ" (extra loop) có thể không có ở một số tRNA; và (iv) vòng TΨC nhận biết ribosome để đi vào đúng vị trí tiếp nhận aminoacyl-tRNA (vị trí A).
Và cuối cùng, đoạn mạch thẳng -CCA ở đầu 3' là vị trí gắn vào của amino acid đã được hoạt hoá để tạo thành các aminoacyl-tRNA.
71
Hình 4.8 Cấu trúc bậc ba (trái) và bậc hai của một phân tử tRNA. III. Cấu trúc và chức năng của các RNA ribosome (rRNA) 1. Chức năng của các rRNA
Các rRNA cùng với các protein đặc thù là những thành phần cấu trúc nên các ribosome -"nhà máy" tổng hợp protein của tế bào (Hình 4.9).
2. Cấu trúc của các rRNA và ribosome
Ở vi khuẩn có 3 loại rRNA có các hệ số lắng là 23S, 16S và 5S, với số lượng nucleotide tương ứng là 2904, 1542 và 120 (xem Bảng 4.1). Ở tế bào eukaryote có 4 loại rRNA với các hệ số lắng là 28S, 18S, 5,8S và 5S. Riêng các tế bào thực vật còn có thêm các rRNA được mã hoá trong các chloroplast DNA (cpDNA).
Các hợp phần cấu tạo nên các ribosome của prokaryote và eukaryote được trình bày ở Bảng 4.4 và Hình 4.9.
Bảng 4.4 Thành phần cấu tạo của các ribosome (R) ở pro- và eukaryote Thành phần R 70S ở vi khuẩn R 80S ở eukaryote
Tiểu đơn vị bé rRNA 16S 18S
Protein 21 phân tử 33 phân tử
Tiểu đơn vị lớn rRNA 23S + 5S 28S + 5S + 5,8S Protein 35 phân tử 49 phân tử
Đường kính 18-20 nm 20-22 nm
72
•ribosome prokaryote
Tiểu đơn vị 50S
rRNA 23S
rRNA 5S
35 protein
•ribosome eukaryote
Tiểu đơn vị 60S
rRNA 28S
rRNA 5,8S
49 protein
Ribosome 70S Ribosome 80S
Tiểu đơn vị 30S rRNA 16S
21 protein
Tiểu đơn vị 40S rRNA 18S
33 protein
Hình 4.9 Các hợp phần cấu thành các ribosome của pro- và eukaryote.
Mỗi ribosome hoàn chỉnh có hai tiếu đơn vị bé và lớn (small and large subunits). Hai tiểu đơn vị này chỉ kết hợp với nhau tạo ra một ribosome hoạt động khi quá trình dịch mã trên mRNA thực sự bắt đầu. Tiểu đơn vị bé bám vào mRNA trước tiên trong dịch mã. Tiểu đơn vị lớn chứa hai vị trí: vị trí A là nơi bám vào của aminoacyl-tRNA và vị trí P là chỗ dừng tạm của peptidyl-tRNA. Trong tiểu đơn vị lớn có chứa peptidyl transferase. Enzyme này có chức năng tách gốc peptidyl ra khỏi tRNA của nó (ở vị trí P) và nối với aminoacyl-tRNA (ở vị trí A) bằng một liên kết peptide làm cho chuỗi polypeptide sinh trưởng dài ra theo chiều N→ C (xem chương 6, mục II-1 và IV-2).
Câu hỏi và Bài tập
1. So sánh các lớp RNA trong các tế bào prokaryote và eukaryote. 2. Mức độ phức tạp của các mRNA trong các tế bào đông vật có vú được biểu hiện như thế nào?
3. Hãy chỉ ra những đặc điểm giống và khác nhau trong cấu trúc của các mRNA trưởng thành của các tế bào prokaryote và eukaryote. 4. Nêu những điểm chính trong sự sửa đổi sau phiên mã đối với sản phẩm phiên mã sơ cấp của các gene phân đoạn và vai trò của các intron. 5. Phân tích sự phù hợp giữa cấu trúc và chức năng của các mRNA.
73
6. Phân tích sự phù hợp giữa cấu trúc và chức năng của các tRNA. 7. Có những loại rRNA nào trong các tế bào prokaryote và eukaryote? Chúng đóng vai trò gì trong tế bào?
8. Hãy cho biết sự giống nhau và khác nhau trong thành phần cấu tạo của các ribosome ở các tế bào prokaryote và eukaryote. Cho biết ý nghĩa của sự giống và khác nhau đó.
9. Thế nào là những base sửa đổi dạng hiếm? Chúng có mặt chủ yếu trong loại RNA nào? Vẽ một sơ đồ minh hoạ.
10. Tại sao hàm lượng các rRNA rất phong phú trong các tế bào, trong khi các RNA khác hiếm hơn? Sự ổn định và bảo tồn cao độ của các tRNA và rRNA ở các tế bào prokaryote và eukaryote có ý nghĩa gì trên phương diện tiến hoá?
Tài liệu Tham khảo
Tiếng Việt
Nguyễn Bá Lộc. 2004. Giáo trình Axit nucleic và Sinh tổng hợp protein (tái bản). Trung tâm ĐTTX - Đại học Huế.
Hoàng Trọng Phán. 1993. Giáo trình Di truyền phân tử (ronéo). Trường ĐHSP Huế.
Hoàng Trọng Phán. 1995. Một số vấn đề về Di truyền học hiện đại (Tài liệu BDTX giáo viên THPT chu kỳ 1993-1996). Trường ĐHSP Huế. Hoàng Trọng Phán. 1997. Di truyền học phân tử (tái bản). Trung tâm ĐTTX Đại học Huế - NXB Giáo Dục.
Hoàng Văn Tiến (chủ biên), Lê Khắc Thận, Lê Doãn Diên. 1997. Sinh hoá học với cơ sở khoa học của công nghệ gene. NXB Nông Nghiệp, Hà Nội.
Tiếng Anh
Bolsover SR, Hyams JS, Shephard EA, White HA, Wiedemann CG. 2003. Cell Biology: A Short Course, 2nd ed. John Wiley & Sons, Inc., UK. Blackburn GM, Gait MJ (Eds., 1996): Nucleic Acids in Chemistry and Biology. Oxford University Press, Oxford.
Campbell PN, Smith AD, Peters TJ. 2005. Biochemistry illustrated - Biochemistry and molecular biology in the post-genomic era. 5th ed., Elsevier Limited, Edinburgh - London - New York - Oxford - Philadelphia - St Louis - Sydney - Toronto. (www.elsevierhealth.com)