🔙 Quay lại trang tải sách pdf ebook Giáo trình nhập môn công nghệ sinh học
Ebooks
Nhóm Zalo
PGS. TS. Nguyễn Hoàng Lộc
Giáo trình
Nhập môn Công nghệ sinh học
Nhà xuất bản Đại học Huế
Năm 2007
NHÀ XUẤT BẢN ĐẠI HỌC HUẾ
Địa chỉ: 01 Điện Biên Phủ, Huế - Điện thoại: 054.834486
Chịu trách nhiệm xuất bản:
Giám đốc: Nguyễn Xuân Khoát
Tổng biên tập: Hoàng Hữu Hòa
Người phản biện:
PGS. TS. Lê Trần Bình
Biên tập nội dung:
PGS. Nguyễn Khải
Biên tập kỹ thuật-mỹ thuật:
Hoàng Minh
Trình bày bìa:
Nguyễn Hoàng Lộc
Chế bản vi tính:
Nguyễn Hoàng Lộc
NHẬP MÔN CÔNG NGHỆ SINH HỌC
In 500 bản khổ 16×24 cm, tại Công ty In Thống kê và Sản xuất Bao bì Huế, 36 Phạm Hồng Thái, Huế. Số đăng ký KHXB: 151-2007/CXB/01-03/ĐHH. Quyết định xuất bản số: 07/QĐ-ĐHH-NXB, cấp ngày 12/4/2007. In xong và nộp lưu chiểu tháng 4 năm 2007.
Lời nói đầu
Công nghệ sinh học là ngành khoa học ứng dụng hiểu biết của con người về các hệ thống sống để sử dụng các hệ thống này hoặc các thành phần của chúng cho các mục đích công nghiệp. Đây là một ngành mũi nhọn, hiện đang được cả thế giới quan tâm do có tốc độ phát triển nhanh chóng và đang tạo ra một cuộc cách mạng sinh học trong nông nghiệp, công nghiệp thực phẩm, y-dược, bảo vệ môi trường, vật liệu…
Từ các sản phẩm công nghệ lên men truyền thống đến các sản phẩm của công nghệ sinh học hiện đại như: sinh vật biến đổi gen, động vật nhân bản, nuôi cấy tế bào gốc, công nghệ sinh học nanô... đã cho thấy phạm vi nghiên cứu và ứng dụng của công nghệ sinh học ngày càng mở rộng và đa dạng, hướng đến một sự phát triển mới là nền công nghiệp công nghệ sinh học. Điều này cho thấy công nghệ sinh học chính là sự phối hợp của khoa học và công nghệ để khai thác những kiến thức về các hệ thống sống cho các ứng dụng thực hành.
nay công ngh
trong nước và trên thế giới. Giáo trình Nhập môn công nghệ sinh học này cung cấp những kiến thức cơ bản cho sinh viên về công nghệ DNA tái tổ hợp, công nghệ lên men vi sinh vật, công nghệ sinh học thực vật, công nghệ sinh học động vật, công nghệ protein cũng như một số ứng dụng của chúng trong lĩnh vực nông nghiệp, y học và môi trường.
Giáo trình này mới được xuất bản lần đầu tiên nên khó tránh khỏi thiếu sót hoặc chưa đáp ứng được yêu cầu bạn đọc. Vì thế, chúng tôi mong nhận được nhiều ý kiến đóng góp để lần xuất bản sau được hoàn thiện hơn.
Chúng tôi chân thành cảm ơn Quỹ Nâng cao chất lượng-Dự án Giáo dục đại học đã hỗ trợ chúng tôi biên soạn giáo trình này, PGS. TS. Lê Trần Bình đã đọc bản thảo và góp nhiều ý kiến quý báu.
Tác giả
Phần I
Các khái niệm và nguyên lý cơ bản
Nhập môn Công nghệ sinh học 5
Chương 1
Mở đầu
I. Định nghĩa công nghệ sinh học
1. Định nghĩa tổng quát
Có nhiều định nghĩa và cách diễn đạt khác nhau về công nghệ sinh học tùy theo từng tác giả, nhưng tất cả đều thống nhất về khái niệm cơ bản sau đây:
Công nghệ sinh học là quá trình sản xuất các sản phẩm trên quy mô công nghiệp, trong đó nhân tố tham gia trực tiếp và quyết định là các tế bào sống (vi sinh vật, thực vật, động vật). Mỗi tế bào sống của cơ thể sinh vật hoạt động trong lĩnh vực sản xuất này được xem như một lò phản ứng nhỏ.
Đầu những năm 1980, đã bắt đầu hình thành công nghệ sinh học hiện đại là lĩnh vực công nghiệp sử dụng hoạt động sinh học của các tế bào đã được biến đổi di truyền. Công nghệ sinh học hiện đại ra đời cùng với sự xuất hiện kỹ thuật gen. Cơ sở sinh học được áp dụng ở đây bao gồm sinh học phân tử, sinh học tế bào, hóa sinh học, di truyền học, vi sinh vật học, miễn dịch học, cùng các nguyên lý kỹ thuật máy tính...
Có hai cách định nghĩa công nghệ sinh học một cách tổng quát nhất: - Do UNESCO (1985) định nghĩa: Công nghệ sinh học là công nghệ sử dụng một bộ phận hay tế bào riêng rẽ của cơ thể sinh vật vào việc khai thác sản phẩm của chúng.
- Do Trường Luật Stanford (1995) định nghĩa: Công nghệ sinh học là công nghệ chuyển một hay nhiều gen vào sinh vật chủ nhằm mục đích khai thác sản phẩm và chức năng của gen đó.
Sự khác biệt rõ rệt nhất của hai định nghĩa trên thuộc về đối tượng tác động của công nghệ sinh học: UNESCO xem cơ quan, bộ phận, tế bào và chức năng riêng rẽ của sinh vật là đối tượng, trong khi đó Trường Luật Stanford lại coi gen là đối tượng tác động của công nghệ.
Từ các định nghĩa trên, có thể phân biệt được hai nhóm công nghệ sinh học là:
Nhập môn Công nghệ sinh học 6
1.1. Công nghệ sinh học truyền thống (traditional biotechnology) Bao gồm:
+ Thực phẩm lên men truyền thống (food of traditional fermentations) + Công nghệ lên men vi sinh vật (microbial fermentation technology) + Sản xuất phân bón và thuốc trừ sâu vi sinh vật (production of microbial fertilizer and pesticide)
+ Sản xuất sinh khối giàu protein (protein-rich biomass production) + Nhân giống vô tính bằng nuôi cấy mô và tế bào thực vật (plant micropropagation)
+ Thụ tinh nhân tạo (in vitro fertilization)
1.2. Công nghệ sinh học hiện đại (modern biotechnology)
Bao gồm:
+ Nghiên cứu genome (genomics)
+ Nghiên cứu proteome (proteomics)
+ Thực vật và động vật chuyển gen (transgenic animal and plant) + Động vật nhân bản (animal cloning)
+ Chip DNA (DNA chip)
+ Liệu pháp tế bào và gen (gene and cell therapy)
+ Protein biệt dược (therapeutic protein)
+ Tin sinh học (bioinformatics)
+ Công nghệ sinh học nano (nanobiotechnology)
+ Hoạt chất sinh học (bioactive compounds)
2. Nội dung khoa học của công nghệ sinh học
Công nghệ sinh học cũng có thể được phân loại theo các kiểu khác nhau. Xét về góc độ các tác nhân sinh học tham gia vào quá trình công nghệ sinh học, có thể chia thành các nhóm sau:
- Công nghệ sinh học thực vật (plant biotechnology)
- Công nghệ sinh học động vật (animal biotechnology)
- Công nghệ sinh học vi sinh vật (microbial biotechnology)
Nhập môn Công nghệ sinh học 7
- Công nghệ sinh học enzyme hay công nghệ enzyme (enzyme biotechnology)
Gần đây, đối với các nhân tố sinh học dưới tế bào còn hình thành khái niệm công nghệ protein (protein engineering) và công nghệ gen (gene engineering). Công nghệ protein và công nghệ gen xuyên suốt và trở thành công nghệ chìa khóa nằm trong công nghệ sinh học thực vật, công nghệ sinh học động vật và công nghệ sinh học vi sinh vật. Nhờ kỹ thuật đọc trình tự gen và kỹ thuật DNA tái tổ hợp, công nghệ gen đã đạt được những thành tựu hết sức to lớn mang tính quyết định, mở ra những giai đoạn phát triển mới. Đó là nghiên cứu về toàn bộ genome của nhiều sinh vật, đáng chú ý là việc giải mã genome của con người và của cây lúa. Đó là việc hình thành cả một phương hướng nghiên cứu, ứng dụng và kinh doanh các sinh vật biến đổi gen (gentically modified organism-GMO) và các thực phẩm biến đổi gen (gentically modified food-GMF). Công nghệ protein có tiềm năng ứng dụng rất lớn trong việc sản xuất ra các protein tái tổ hợp (recombinant protein) dùng làm dược phẩm điều trị các bệnh hiểm nghèo như interferon, interleukin, insulin...
Mặt khác, tùy vào đối tượng phục vụ của công nghệ sinh học, có thể chia ra các lĩnh vực công nghệ sinh học khác nhau như:
- Công nghệ sinh học nông nghiệp (biotechnology in agriculture) - Công nghệ sinh học chế biến thực phẩm (biotechnology in food processing)
- Công nghệ sinh học y dược (biotechnology in medicine pharmaceutics)
- Công nghệ sinh học môi trường (environmental biotechnology) - Công nghệ sinh học vật liệu (material biotechnology)
- Công nghệ sinh học hóa học (biotechnology in chemical production) - Công nghệ sinh học năng lượng (biotechnology in energy production)...
Một số tác giả cho rằng loài người đã áp dụng công nghệ sinh học từ rất lâu vào các hoạt động sản xuất, ví dụ: công nghệ sản xuất đồ uống (rượu, bia...) hoặc công nghệ sản xuất thực phẩm (men bánh mì, nước mắm, tương, chao...). Do đó, việc định nghĩa và phân loại công nghệ sinh học trong giai đoạn phát triển ban đầu có một ý nghĩa rất quan trọng để có những chính
Nhập môn Công nghệ sinh học 8
sách đầu tư hợp lý và ưu tiên cho công nghệ sinh học. Dưới đây là các lĩnh vực ứng dụng công nghệ sinh học hiện nay đang được quan tâm hàng đầu.
3. Các lĩnh vực ứng dụng của công nghệ sinh học
3.1. Công nghệ sinh học trong nông nghiệp
Lĩnh vực nông nghiệp tuy không phải là mục tiêu phát triển hàng đầu của công nghệ sinh học ở nhiều nước công nghiệp trên thế giới, nhưng trên thực tế những hoạt động nghiên cứu và phát triển, sản xuất và thương mại hóa ở lĩnh vực này cũng được nhiều tập đoàn lớn quan tâm. Có thể nêu ba lĩnh vực chính là:
- Giống cây trồng và vật nuôi nhân vô tính và chuyển gen mang những đặc điểm nông-sinh quý giá mà các phương pháp truyền thống không tạo ra được, đồng thời lại được bảo vệ thông qua bản quyền tác giả.
- Các chế phẩm sinh học dùng trong bảo vệ cây trồng vật nuôi, như: vaccine, thuốc trừ sâu bệnh và phân bón vi sinh.
- Công nghệ bảo quản và chế biến nông-hải sản bằng các chế phẩm vi sinh và enzyme. Giá trị nông sản được nâng lên nhiều lần và quy trình công nghệ đi kèm trang thiết bị là một dạng hàng hóa trong kinh doanh chuyển giao công nghệ.
Ngoài ra có thể liệt kê thêm một số lĩnh vực khác:
- Công nghệ sinh học chế biến thực phẩm: Các enzyme (amylase, rennin, β-galactosidase, invertase, gluco-isomerase, pectinase), các chất phụ gia thực phẩm (các chất tạo ngọt, hương vị, tạo màu, bột nở và làm ổn định, các vitamin, các amino acid, các chất chống oxy hóa, các chất bảo quản, các chất hoạt hóa bề mặt...).
- Các loại thức ăn bổ sung cho chăn nuôi (kháng sinh mới...). - Các loại thuốc trừ sâu, diệt cỏ với tính đặc hiệu tăng lên (các sản phẩm Bt, các baculovirus, tuyến trùng ký sinh...).
- Các hormone sinh trưởng thực vật (các cytokinin...).
- Các hóa chất chẩn đoán bệnh cho động-thực vật.
Nhập môn Công nghệ sinh học 9
3.2. Công nghệ sinh học trong y dược
Có lẽ thành tựu công nghệ sinh học được thể hiện rõ nét nhất là ở lĩnh vực y học. Hiện nay, hầu hết các sản phẩm quan trọng sau đây đều được sản xuất trên cơ sở công nghệ sinh học, bao gồm các ứng dụng sau:
- Các loại kháng sinh và các chất diệt khuẩn, các loại vitamin và chất bổ dưỡng, các loại amino acid và hỗn hợp của chúng trong dịch truyền, các loại vaccine và các loại hormone chữa bệnh.
- Các bộ kit chuẩn dùng trong chẩn đoán bệnh và chẩn đoán hóa sinh trong y dược.
- Cây trồng và vật nuôi được cấy chuyển những gen sản sinh ra các loại protein trị liệu đang là mục tiêu đầu tư của khá nhiều công ty y dược hàng đầu trên thế giới hiện nay.
Cụ thể là nghiên cứu và sản xuất các dược phẩm, các kháng thể đơn dòng, interferon, các hormone (hormone sinh trưởng, insulin, erythropoietin, thrombopoietin...), các enzyme (urokinase, heparinase, alcohol dehydrogenase), các protein khác (các kháng nguyên đặc hiệu, albumin, antithrombin, fibronectin...), các kháng sinh, thuốc và vitamin mới, các dược phẩm có bản chất protein, các loại vaccine viêm gan B, C, HIV, cúm, sốt rét, viêm não, tả và các tác nhân gây bệnh tiêu chảy, các kit chẩn đoán như: chẩn đoán sự có mặt HIV, virus viêm gan B và C trong máu, một số chẩn đoán thai..., liệu pháp gen: điều trị các gen gây bệnh di truyền.
Hiện nay, các công ty công nghệ sinh học y dược hàng đầu thế giới đang tập trung vào nghiên cứu tạo ra sản phẩm chống lại các căn bệnh như HIV/AIDS, các loại bệnh ung thư, tiểu đường, các bệnh tim mạch, các bệnh truyền nhiễm...
3.3. Công nghệ sinh học công nghiệp và chế biến thực phẩm Công nghệ sinh học công nghiệp bao gồm các lĩnh vực sản xuất các loại enzyme như amylase, cellulase và protease dùng trong công nghiệp dệt, công nghiệp xà phòng và mỹ phẩm, công nghiệp bánh kẹo, rượu bia và nước giải khát…
Sau đây là các loại sản phẩm của công nghệ sinh học công nghiệp: - Công nghiệp hóa chất: Các hóa chất thông dụng (ví dụ: acrylamide) đều có thể sản xuất bằng công nghệ sinh học. Công nghiệp hóa học sẽ có
Nhập môn Công nghệ sinh học 10
hiệu quả hơn nếu dùng các chất xúc tác sinh học (enzyme), tái sinh và xử lý các dung môi bằng con đường sinh học.
- Quá trình chế biến tinh bột: Dùng các enzyme do công nghệ sinh học tạo ra để dịch hóa và đường hóa tinh bột thành glucose và chuyển hóa thành fructose.
- Công nghiệp làm sạch: Các chất giặt tẩy hiện đại đuợc bổ sung protease và các enzyme khác làm sạch các vết bẩn protein, tinh bột và chất béo.
- Công nghiệp bột gỗ và giấy: Nhu cầu của thị trường và bảo vệ môi trường ngày càng lớn đối với giấy ít chứa các hợp chất chlorine gây ô nhiễm. Quá trình sản xuất bột giấy hiện nay gây ô nhiễm rất nặng. Công nghệ sinh học đưa ra giải pháp sinh học để sản xuất bột giấy không gây ô nhiễm bằng cách sử dụng các loại nấm phân hủy lignin-cellulose để tạo bột. Các enzyme cũng được dùng nâng cao chất lượng sợi và chất lượng giấy.
- Công nghiệp khai khoáng và phát hiện khoáng sản. Có hai công nghệ: lọc sinh học/oxy hóa sinh học các kim loại, xử lý ô nhiễm kim loại và tái sinh. Công nghệ lọc kim loại dùng các vi sinh vật có thể thu được các kim loại quí như đồng, kẽm và cobalt. Công nghệ xử lý sinh học ô nhiễm có thể áp dụng đối với các kim loại nặng.
3.4. Công nghệ sinh học môi trường
Tuy là lĩnh vực khá mới nhưng sự phát triển và ứng dụng của công nghệ sinh học môi trường rất đáng kể. Mọi quá trình xử lý chất thải nếu không khép kín bằng xử lý sinh học thì khó có thể thành công trọn vẹn.
Các hoạt động chính của công nghệ sinh học môi trường đang được chú trọng là:
- Công nghệ phân hủy sinh học: Dùng các cơ thể sống phân hủy các chất thải độc tạo nên các chất không độc như nước, khí CO2 và các vật liệu khác. Bao gồm, công nghệ kích thích sinh học: bổ sung chất dinh dưỡng để kích thích sự sinh trưởng của các vi sinh vật phân hủy chất thải có sẵn trong môi trường, công nghệ bổ sung vi sinh vật vào môi trường để phân hủy chất ô nhiễm, công nghệ xử lý ô nhiễm kim loại và các chất ô nhiễm khác bằng thực vật và nấm.
Nhập môn Công nghệ sinh học 11
- Dự phòng môi trường: Phát triển các thiết bị dò và theo dõi ô nhiễm môi truờng, đặc biệt trong việc dò nước và khí thải công nghiệp trước khi giải phóng ra môi trường.
II. Sơ lược lịch sử hình thành công nghệ sinh học
Công nghệ sinh học phát triển cho đến ngày nay, đã qua ba giai đoạn chính:
- Công nghệ vi sinh.
- Công nghệ tế bào (nuôi cấy mô và tế bào động-thực vật...). - Công nghệ sinh học hiện đại, tức công nghệ gen.
Cũng có tác giả gắn quá trình phát triển nêu trên với ba cuộc cách mạng sinh học.
- Cách mạng sinh học lần thứ nhất (đầu thế kỷ 20): sử dụng quá trình lên men để sản xuất các sản phẩm như acetone, glycerine, citric acid, riboflavin...
- Cách mạng sinh học lần thứ hai (sau thế chiến thứ 2): sản xuất kháng sinh, các sản phẩm lên men công nghiệp như glutamic acid, các polysaccharide; trong đó có các thành tựu về đột biến, tạo các chủng vi sinh vật cho năng suất và hiệu quả cao, phát triển các quá trình lên men liên tục và phát hiện phương pháp mới về bất động enzyme để sử dụng nhiều lần...
- Cách mạng sinh học lần thứ ba (bắt đầu từ giữa thập niên 1970): với các phát hiện quan trọng về enzyme cắt hạn chế, enzyme gắn, sử dụng plasmid làm vector tạo dòng, đặt nền móng cho một nền công nghệ sinh học hoàn toàn mới đó là công nghệ DNA tái tổ hợp.
Hai giai đoạn đầu, công nghệ vi sinh và công nghệ tế bào, sử dụng hoạt động sinh học của các tế bào tách biệt, nhưng chưa biến đổi được cấu trúc di truyền của chúng, nên được xem là hai giai đoạn của công nghệ sinh học truyền thống. Phải đến cuộc cách mạng sinh học lần thứ ba như đã nêu trên, thì mới ra đời nền công nghệ sinh học hiện đại, giai đoạn phát triển cao nhất của công nghệ sinh học, mở ra kỷ nguyên mới của sinh học.
Cũng có thể chia lịch sử hình thành và phát triển công nghệ sinh học theo các giai đoạn sau:
Nhập môn Công nghệ sinh học 12
1. Giai đoạn thứ nhất
Đã hình thành từ rất lâu trong việc sử dụng các phương pháp lên men vi sinh vật để chế biến và bảo quản thực phẩm, ví dụ sản xuất pho mát, dấm ăn, làm bánh mì, nước chấm, sản xuất rượu bia… Trong đó, nghề nấu bia có vai trò rất đáng kể. Ngay từ cuối thế kỷ 19, Pasteur đã cho thấy vi sinh vật đóng vai trò quyết định trong quá trình lên men. Kết quả nghiên cứu của Pasteur là cơ sở cho sự phát triển của ngành công nghiệp lên men sản xuất dung môi hữu cơ như aceton, ethanol, butanol, isopropanol… vào cuối thế kỷ 19, đầu thế kỷ 20.
2. Giai đoạn thứ hai
Nổi bật nhất của quá trình phát triển công nghệ sinh học trong giai đoạn này là sự hình thành nền công nghiệp sản xuất thuốc kháng sinh penicillin, khởi đầu gắn liền với tên tuổi của Fleming, Florey và Chain (1940). Trong thời kỳ này đã xuất hiện một số cải tiến về mặt kỹ thuật và thiết bị lên men vô trùng cho phép tăng đáng kể hiệu suất lên men. Các thí nghiệm xử lý chất thải bằng bùn hoạt tính và công nghệ lên men yếm khí tạo biogas chứa chủ yếu khí methane, CO2 và tạo nguồn phân bón hữu cơ có giá trị cũng đã được tiến hành và hoàn thiện.
3. Giai đoạn thứ ba
Bắt đầu từ những năm 50 của thế kỷ 20, song song với việc hoàn thiện các quy trình công nghệ sinh học truyền thống đã có từ trước, một số hướng nghiên cứu và phát triển công nghệ sinh học đã hình thành và phát triển mạnh mẽ nhờ một loạt những phát minh quan trọng trong ngành sinh học nói chung và sinh học phân tử nói riêng. Đó là việc lần đầu tiên xác định được cấu trúc của protein (insulin), xây dựng mô hình cấu trúc xoắn kép của phân tử DNA (1953). Tiếp th -
(Bảng 1.1).
Nhập môn Công nghệ sinh học 13
Y tế
Công nghiệp
thực phẩm
Giám sát môi trường
Năng lượng
.
Dùng enzyme tạo các bộ cảm biến sinh học trong các thiết bị phân tích y tế. Sử dụng tế bào vi sinh vật, tế bào động thực vật trong sản xuất thuốc (ví dụ: steroid) và tổng hợp các loại kháng sinh mới. Sử dụng enzyme trong chữa trị bệnh.
enzyme
.
. chất
chất ).
(citric acid, itaconic acid, acetic
acid...), sản xuất .
.
4. Giai đoạn thứ tư
Bắt đầu từ năm 1973, khi những thí nghiệm khởi đầu dẫn đến sự ra đời của kỹ thuật DNA tái tổ hợp được thực hiện và sự xuất hiện insulin-sản phẩm đầu tiên của nó vào năm 1982, cùng với thí nghiệm chuyển gen vào cây trồng cũng thành công vào năm này. Đến nay, công nghệ sinh học hiện đại đã có những bước tiến khổng lồ trong các lĩnh vực nông nghiệp (cải thiện giống cây trồng...), y dược (liệu pháp gen, liệu pháp protein, chẩn đoán bệnh...), công nghiệp thực phẩm (cải thiện các chủng vi sinh vật...)... Những thành công này sẽ được trình bày chi tiết hơn trong Phần II-Các ứng dụng của công nghệ sinh học.
Nhập môn Công nghệ sinh học 14
III. Một số khía cạnh về khoa học và kinh tế của công nghệ sinh học hiện đại
Các phương tiện thông tin đại chúng đã đăng tải không ít các ý kiến phản đối ứng dụng một số thành tựu công nghệ sinh học trong sản xuất, thậm chí đối với những thành tựu được giới khoa học đánh giá là sáng chói. Thật vậy, công nghệ sinh học cũng như khoa học hạt nhân, bên cạnh các ứng dụng to lớn cho lợi ích và phát triển của loài người, có thể còn mang lại nhiều hiểm họa không thể lường trước được hậu quả. Gần đây, khi các nhà khoa học xác nhận kỹ thuật nhân bản cừu Dolly hoàn toàn có thể áp dụng cho việc nhân bản con người, ở khắp các nước đã dấy lên một làn sóng phản đối việc nhân bản người, có nơi cấm hoàn toàn hướng nghiên cứu này. Sau đây chúng ta sẽ tìm hiểu các hiểm họa tiềm tàng của công nghệ sinh học.
1. Về khoa học
Sự dè dặt trong sử dụng các sản phẩm chuyển gen làm thực phẩm cho người và gia súc do nhiều lý do khác nhau, nhưng tựu trung có thể chia thành hai nhóm sau:
- Bộ máy di truyền của sinh vật mang tính hoàn thiện rất cao vì đã tiến hóa qua hàng trăm triệu năm, những gen mới được gắn thêm vào cho cây trồng và vật nuôi để tăng năng suất hoặc chất lượng nông sản, biết đâu có thể phá vỡ tính hoàn thiện, tính cân bằng của sự sống ở các sinh vật này. Và vì thế, con người không thể yên tâm với việc hàng ngày nuốt vào cơ thể một số lượng lớn các sản phẩm thiếu tính hoàn thiện, cân bằng hay nói cách khác là có thể có dị tật.
- Cho đến nay trong việc tạo ra các GMO, các gen kháng kháng sinh như kanamycin, ampicillin hoặc hygromycin thường được sử dụng kèm theo để làm gen chỉ thị chọn lọc. Chúng tồn tại trong sản phẩm của các GMO và có thể có ảnh hưởng trực tiếp hoặc gián tiếp thông qua dây chuyền thức ăn của sinh quyển đến con người. Mặc dù khả năng này là vô cùng thấp, thậm chí khi một gen kháng sinh được phát tán sang một sinh vật khác thì tác động của việc này cũng không đáng kể do các gen chỉ thị chọn lọc được sử dụng trong sinh vật chuyển gen có ứng dụng rất hạn chế trong thú y và y học. Tuy nhiên, để làm dịu những lo lắng của xã hội, các nhà nghiên cứu được yêu cầu tránh sử dụng các gen kháng kháng sinh trong sinh vật chuyển gen. Việc sử dụng gen chỉ thị thay thế khác đang được đánh giá và phát
Nhập môn Công nghệ sinh học 15
triển. Hiện nay, người ta đang tìm cách thay thế các gen chỉ thị chọn lọc cũ bằng các gen có vẻ ít hại hơn như gen mã hóa protein phát huỳnh quang màu xanh lục (green fluorescence protein-GFP). Gen GFP được coi là một gen chỉ thị tốt, vì nó làm cho các GMO phát sáng xanh rực rỡ khi đặt dưới tia tử ngoại. Nhưng dù sao sự nghi ngại vẫn còn, vì gen GFP có nguồn gốc từ một loài cá ở Bắc Băng Dương, chứ không từ một động vật có nguồn gốc gần với người.
2. Về kinh tế
2.1. Những công ty đa quốc gia về công nghệ sinh học
Tổ chức quốc tế nông nghiệp tiến bộ RAFI (Rural Advancement Foundation International) là một tổ chức phi chính phủ ở Canada hoạt động nhằm hạn chế ảnh hưởng của các công ty đa quốc gia về giống. Theo RAFI, các công ty đa quốc gia về công nghệ sinh học sẽ hoạt động rất mạnh trong thế kỷ 21, hiện nay những công ty này đang phát triển nhanh chóng nhờ thâu tóm các công ty nhỏ hơn và trước hết nhờ lợi nhuận khổng lồ thu được trong độc quyền bán các sản phẩm GMO.
Chẳng hạn cách đây hơn 15 năm, công ty Monsanto chỉ chuyên về các sản phẩm hóa dầu, thuốc trừ sâu và trừ cỏ. Tuy nhiên, thời gian gần đây Monsanto đã đầu tư rất lớn và triển khai công nghệ gen thực vật để tạo ra các giống GMO và đang trở thành công ty giống lớn nhất thế giới. RAFI gọi Monsanto là một “Microsoft công nghệ sinh học” vì từ năm 1996 đến nay Monsanto đã mua lại nhiều công ty trước đây vốn là người khổng lồ trên thị trường hạt giống.
2.2. Sự lệ thuộc vào các công ty đa quốc gia về công nghệ sinh học RAFI tiên đoán người nông dân ở hầu hết các nước trên thế giới, kể cả các nước công nghiệp phát triển, dần dần sẽ bị lệ thuộc vào một nhóm nhỏ các công ty công nghệ sinh học đa quốc gia.
Với quy chế ngặt nghèo về quyền tác giả IPR (Intellectual Property Right) hiện hành trong quan hệ kinh tế thế giới, người nông dân sẽ bị tước bỏ hoàn toàn quyền tự do trồng cây gì trên mảnh đất của mình và bán cho ai sản phẩm của mình. Lý do để các công ty như Monsanto có được nhiều quyền hạn như vậy chính là sự tiến bộ của công nghệ sinh học.
Nhập môn Công nghệ sinh học 16
Chẳng hạn, gen terminator được cơ quan đăng ký bản quyền của Mỹ chính thức cấp bằng phát minh cho công ty Delta Pine (3/1998). Khi chuyển gen vào bất cứ một giống cây nào, hạt bán ra sẽ chỉ nảy mầm trong một thế hệ duy nhất. Nếu người nông dân lấy hạt để trồng vụ sau, gen này sẽ tạo ra một hợp chất giết chết mầm, vì thế hạt hoàn toàn không nảy mầm được. Với gen terminator trong tay, các công ty đa quốc gia sẽ bắt nông dân các nước hàng năm phải mua hạt giống của họ.
Mặt khác, các công ty giống đang thôn tính dần các công ty chế biến lương thực, thực phẩm là đầu ra của nông sản. Vừa độc quyền hạt giống GMO lại vừa nắm các công ty chế biến nông sản, các công ty đa quốc gia công nghệ sinh học sẽ không chừa một lối thoát nào cho nông dân các nước đang phát triển.
IV. Các vấn đề pháp lý của công nghệ sinh học hiện đại Công nghệ DNA tái tổ hợp đã giúp các nhà khoa học thay đổi cơ chế tiến hóa của tự nhiên, sáng tạo ra sản phẩm của gen, tạo ra các dạng sinh vật mới. Ngày càng có nhiều bằng chứng hiển nhiên về lợi ích của công nghệ DNA tái tổ hợp. Tuy nhiên, cũng phải cân nhắc đến những nguy cơ tiềm tàng của nó, và thực tế cũng đã nảy sinh một số vấn đề pháp lý quan trọng buộc chúng ta phải xem xét lại một cách thận trọng.
Chẳng hạn, chúng ta có thể tham khảo hệ thống quản lý đối với các sản phẩm cây trồng của công nghệ sinh học hiện đại ở Mỹ, nơi mà lĩnh vực công nghệ sinh học được đầu tư và phát triển tốt nhất trên thế giới.
Hệ thống quản lý của Mỹ là một bộ phận quan trọng nhằm đảm bảo an toàn lương thực. Phối hợp với Bộ Nông nghiệp Mỹ (USDA) và Cục Bảo vệ Môi trường (EPA), Cục quản lý Thực phẩm và Dược phẩm (FDA) đóng vai trò quản lý các loại lương thực có nguồn gốc thực vật được tạo ra nhờ công nghệ sinh học. Theo Đạo luật Lương thực, Dược phẩm và Mỹ phẩm (FD&C), FDA có thẩm quyền bảo đảm độ an toàn của tất cả các lương thực trong nước và nhập khẩu cho người và động vật trên thị trường Mỹ. Ngoại trừ thịt gia súc-gia cầm và một số sản phẩm trứng, những hạng mục này thuộc phạm vi điều tiết của USDA. Tuy nhiên, độ an toàn của dư lượng thuốc thú y trong thịt gia súc, gia cầm và thủy sản là do FDA quản lý. Thuốc trừ sâu lại chủ yếu do EPA điều tiết. Cơ quan Kiểm tra Sức khoẻ Thực vật và Động vật của USDA (APHIS) có chức năng giám sát an toàn nông
Nhập môn Công nghệ sinh học 17
nghiệp và an toàn môi trường trong trồng trọt và thử nghiệm tại hiện trường các giống cây trồng được tạo ra nhờ công nghệ sinh học.
Các loại lương thực và thành phần lương thực được tạo ra nhờ công nghệ sinh học phải đáp ứng những tiêu chuẩn an toàn tương tự như các tiêu chuẩn mà Đạo luật FD&C áp dụng đối với các cây trồng được tạo ra theo phương pháp lai giống thông thường. Điều này có nghĩa là các sản phẩm công nghệ sinh học cũng phải an toàn giống như các sản phẩm truyền thống trên thị trường. FDA có quyền loại trừ một loại lương thực khỏi thị trường hoặc trừng phạt những người buôn bán loại lương thực đó nếu nó gây ra rủi ro đối với sức khỏe cộng đồng. Cần lưu ý rằng Đạo luật FD&C quy định những người áp dụng công nghệ sinh học phải chịu trách nhiệm pháp lý nhằm đảm bảo rằng những lương thực mà họ bán cho người tiêu dùng phải an toàn và đáp ứng tất cả các yêu cầu về pháp lý.
1. An toàn sinh học
1.1. Sự chuyển gen bằng hạt phấn
Cho tới nay không có hạt phấn của loại cây trồng biến đổi gen nào được hạn chế khả năng phát tán. Các phương thức quản lý như cách ly không gian và thời gian có thể hạn chế sự lưu chuyển gen (gene flow) giữa cây trồng, hạn chế hạt sót lại trong đất và cây sót lại sau khi thu hoạch. Việc sử dụng vùng cách ly, rào cản cây trồng và các rào cản thực vật khác giữa nguồn tạo và nơi nhận hạt phấn cũng có thể giảm mức độ phát tán hạt phấn. Thời gian hạt phấn ở trong không khí cũng khá dài, do đó có thể phát tán đến khoảng cách khá xa. Tuy nhiên, điều kiện thời tiết và môi trường thay đổi có thể gây ra sự phát tán ở những khoảng cách xa hơn nữa. Các biện pháp cách ly sinh học đang được phát triển nhằm xác định liệu sự sinh sản ở cây trồng có thể kiểm soát được hay không để tránh sự giao lưu gen qua hạt hoặc hạt phấn.
Đặc biệt ở các giống hoặc dòng có cây bất dục đực, sẽ xảy ra hiện tượng lai xa với giống biến đổi gen hữu thụ ở một tần số cao hơn và khoảng cách xa hơn so với giống truyền thống. Sự tích lũy gen (gene stacking) đã được quan sát ở cây trồng và người ta dự đoán là cây trồng mang gen đa kháng sẽ trở nên phổ biến sau khi cây trồng chuyển gen được phép đưa vào thị trường, và vì vậy cây mọc hoang biến đổi gen sẽ phải cần các biện pháp diệt cỏ khác.
Nhập môn Công nghệ sinh học 18
Các nghiên cứu cho thấy phần lớn sự thụ phấn chéo xảy ra ở khoảng cách ngắn và khả năng thụ phấn thành công giảm theo hàm mũ so với khoảng cách từ nguồn phát ra hạt phấn. Nhưng trên phạm vi nông trại vẫn có sự lưu chuyển gen, mặc dù mức độ xảy ra rất thấp ở một khoảng cách khá xa, vì vậy sự tách biệt hoàn toàn về mặt di truyền là rất khó duy trì.
Trong khi hạt phấn đóng vai trò quan trọng trong sự phát tán theo không gian thì hạt giống đóng vai trò quan trọng trong sự phát tán theo thời gian. Do đó, khi cách ly cây trồng chuyển gen với cây trồng không chuyển gen phải tính đến chuyện trước đó cây trồng chuyển gen có được trồng trên cùng mảnh đất đó không và tập quán canh tác có gây ra sự di chuyển các hạt giữa các mảnh ruộng hay không.
Ngoài ra, sự lưu chuyển gen giữa cây biến đổi gen và họ hàng của nó còn tùy thuộc vào loại tính trạng gen chuyển quy định, đặc điểm sinh học của cây (thụ phấn chéo hoặc tự thụ phấn) và bối cảnh nông nghiệp (hệ thống cây trồng, tổ chức không gian giữa các thửa ruộng).
1.2. Sự bền vững của DNA trong đất
DNA của cây chuyển gen có thể được phóng thích vào môi trường từ các nguyên liệu thực vật đã già hoặc mục nát. Vấn đề này đã được khảo sát ở một số cây chuyển gen như thuốc lá (aacC1), hoa dã yên (NOS-nptII) và củ cải đường (bar/TR1, TR2/nptII, 35S/BNYVV-cp). Sự bền vững của cấu trúc DNA trong đất được phát hiện bằng cách tách chiết DNA trực tiếp từ đất, sau đó khuếch đại cấu trúc này bằng kỹ thuật PCR. Chọn lọc primer thích hợp cho phép phát hiện rõ ràng cấu trúc chuyển gen bên cạnh các gen xuất hiện tự nhiên. Với phương pháp này sự hiện diện của cấu trúc DNA có thể được phát hiện nhưng không có thông tin nào về sự hiện diện của nó trong nguyên liệu thực vật mục nát, có thể do DNA tự do đã được hấp thụ vào bề mặt đất. DNA của cây củ cải đường chuyển gen được phát hiện trong mẫu đất ở vị trí đã không sử dụng 6, 12 và 18 tháng sau khi cây củ cải đường bị cày lấp trong đất. Người ta cũng đã tìm thấy DNA cây thuốc lá chuyển gen ở trong đất sau hơn 1 năm thu hoạch. Trong khi đó DNA của hoa dã yên chuyển gen chỉ có thể phát hiện vào thời điểm 2 tháng sau khi cây được cày lấp trong đất.
Nhập môn Công nghệ sinh học 19
Mặc dù chỉ có một vài khảo sát về sự bền vững của DNA cây chuyển gen ở trong đất, nhưng sự bền vững của cấu trúc trong một thời gian dài có thể được chứng minh rõ ràng.
1.3. Chuyển gen ngang từ thực vật vào vi sinh vật đất
Chuyển gen ngang (horizontal gene transfer) là hiện tượng chuyển các gen hoặc nguyên liệu di truyền trực tiếp từ một cá thể riêng biệt vào một cá thể khác bằng các quá trình tương tự sự gây nhiễm. Phân biệt với một quá trình bình thường là chuyển gen dọc (vertical gene transfer)-từ bố mẹ vào con cái-xuất hiện trong quá trình sinh sản. Chuyển gen ngang trong phần này đề cập đến DNA ngoại lai của cây chuyển gen hiện diện ở trong đất, vi khuẩn phát triển khả năng để nhận gen này và cuối cùng, các trình tự này được hợp nhất trong genome của vi khuẩn.
Nguy cơ của công nghệ di truyền đó là làm tăng tiềm năng của sự chuyển gen ngang qua các loài không họ hàng. Các cơ chế tế bào cho phép các gen ngoại lai xen đoạn vào genome của một loài nào đó. Các gen kháng thuốc diệt cỏ hoặc kháng kháng sinh của vi khuẩn thường được sử dụng như
là các chỉ thị chọn lọc đối với cây chuyển gen. Vì thế, chuyển ngang từ thực vật vào vi sinh vật của các gen kháng như thế thường được xem như là một hiệu ứng tiềm tàng không mong muốn giữa cây chuyển gen và các vi sinh vật đất.
Tuy nhiên, cho đến nay chưa có bằng chứng rõ ràng về việc chuyển gen từ thực vật vào các vi sinh vật. Hiện nay, các nghiên cứu an toàn sinh học (biosafety) về chuyển gen ngang từ cây chuyển gen vào vi sinh vật (vi khuẩn và nấm) có hai hướng chính là tìm hiểu cơ chế chuyển gen từ thực vật vào vi sinh vật và đánh giá các hậu quả sinh thái của nó.
Cơ chế chủ yếu của việc chuyển gen từ thực vật vào vi sinh vật là quá trình biến nạp tự nhiên đòi hỏi sự hấp thụ DNA tự do. Vi khuẩn đất có thể biến nạp tự nhiên và hợp nhất DNA ngoại lai trong genome của mình. Để chuyển gen từ thực vật vào vi sinh vật ở điều kiện đồng ruộng, không phải chỉ có cơ chế cho phép hấp thụ và sao chép trong một vật chủ mới mà sự chọn lọc vật chủ để biểu hiện một tính trạng mới là quan trọng nhất. Phát hiện chuyển gen ngang có thể thực hiện bằng cách phân tích vi khuẩn đất sau giai đoạn nuôi cấy đầu tiên.
Nhập môn Công nghệ sinh học 20
1.4. Chuyển gen từ thực vật vào virus
Kết quả đầu tiên về cây chuyển gen biểu hiện protein vỏ của virus khảm thuốc lá (TMV) đã ngăn chận sự phát triển của bệnh xuất hiện trong năm 1986. Phương thức này sau đó đã được sử dụng để tạo ra tính kháng cho các loại virus khác nhau, tuy nhiên các nhà di truyền học đã đặt câu hỏi về sự an toàn của cây trồng chuyển gen ngay từ những ngày đầu tiên. Nguy cơ rõ rệt nhất là tiềm năng tạo ra các virus gây nhiễm mới bằng sự tái tổ hợp, ví dụ: gen chuyển của virus (viral transgene) liên kết hoặc trao đổi các phần với nucleic acid của các virus khác. Do vỏ protein không ngăn được virus xâm nhập vào tế bào thực vật, gen chuyển (transgene) sẽ được tiếp xúc với các nucleic acid của nhiều virus được mang tới thực vật bởi các vector côn trùng (insect vector).
Một số nghiên cứu đã chứng minh rằng các virus thực vật có thể tấn công một loạt các gen virus khác nhau từ cây chuyển gen. Chẳng hạn: - Virus gây bệnh khảm hoại tử ở cây cỏ ba lá màu đỏ (red clover necrotic mosaic virus-RCNMV) dạng khiếm khuyết đã thiếu gen cho phép nó chuyển từ tế bào này đến tế bào khác (vì thế không gây nhiễm được) đã tái tổ hợp với một bản sao của gen đó trong cây thuốc lá chuyển gen Nicotiana benthamiana, và đã sinh sản các virus gây nhiễm. - Cây cải Brassica napus chuyển gen VI, một nhân tố hoạt động dịch mã, của virus khảm súp-lơ (cauliflower mosaic virus-CaMV), đã tái tổ hợp với phần bổ sung của virus thiếu mất gen đó, và tạo ra virus gây nhiễm trong 100% cây chuyển gen.
- Sự tái tổ hợp giữa CaMV dạng hoang dại và dạng chuyển gen VI được chứng minh trong N. bigelovii. Ít nhất một trong số các virus tái tổ hợp có độc tính hơn dạng hoang dại.
- Cây N. benthamiana biểu hiện một đoạn gen protein vỏ của virus CCMV (cowpea chlorotic mottle virus) đã tái tổ hợp với virus khiếm khuyết thiếu gen đó.
Nhiều khảo sát cho thấy trong các thí nghiệm có CaMV tần số tái tổ hợp cao hơn nhiều so với các virus khác. Trong khi CCMV tái tổ hợp được phục hồi từ 3% cây chuyển gen N. benthamiana, thì CaMV tái tổ hợp được phục hồi từ 36% cây chuyển gen N. bigelovii. Người ta nghi ngờ rằng sự đứt gãy DNA sợi đôi có thể xảy ra trong trường hợp tái tổ hợp ở CaMV do thực tế là DNA chuyển gen bao gồm cả promoter CaMV 35S.
Nhập môn Công nghệ sinh học 21
2. An toàn thực phẩm
Các giống cây trồng chuyển gen ngày càng được phát triển nhờ vào các công cụ của công nghệ sinh học hiện đại. Cũng chính vì vậy mà nhiều người băn khoăn rằng liệu các thực phẩm này có an toàn bằng các loại thực phẩm có được nhờ sử dụng các phương pháp nông nghiệp truyền thống hay không. Vậy sự khác biệt giữa lai giống thông thường và công nghệ sinh học thực vật là gì. Thực ra cả hai đều có cùng một một mục tiêu là tạo ra các giống cây trồng có chất lượng cao với những đặc tính đã được cải thiện giúp chúng phát triển tốt hơn và ngon hơn. Sự khác biệt là ở chỗ mục đích này đạt được bằng cách nào.
Lai giống truyền thống đòi hỏi sự trao đổi hàng ngàn gen giữa hai cây để có được tính trạng mong muốn. Trong khi đó, nhờ công nghệ sinh học hiện đại, chúng ta có thể lựa chọn một đặc tính mong muốn và chuyển riêng nó vào hạt giống. Sự khác biệt giữa hai kỹ thuật này là rất lớn. Phương pháp công nghệ sinh học hợp lý hơn, có hiệu quả cao và đem lại kết quả rất tốt.
Các kỹ thuật sử dụng trong công nghệ sinh học hiện đại cung cấp cho những nhà lai tạo giống những công cụ chính xác cho phép họ chuyển những đặc tính mong muốn vào cây trồng. Hơn thế nữa, họ có thể làm điều này mà không bị chuyển thêm các tính trạng không mong muốn vào cây như vẫn thường xảy ra, nếu sử dụng lai giống truyền thống.
Thực phẩm có nguồn gốc từ cây trồng chuyển gen phải trải qua nhiều thử nghiệm hơn bất kỳ loại thực phẩm nào trong lịch sử. Trước khi được đưa ra thị trường, chúng phải được đánh giá sao cho phù hợp với các quy định do một vài tổ chức khoa học quốc tế đưa ra như Tổ chức Y tế Thế giới, Tổ chức Nông Lương, Tổ chức Hợp tác và Phát triển Kinh tế… Những quy định này như sau:
- Các sản phẩm chuyển gen cần được đánh giá giống như các loại thực phẩm khác. Các nguy cơ gây ra do thực phẩm có nguồn gốc từ công nghệ sinh học cũng có bản chất giống như các loại thực phẩm thông thường.
- Các sản phẩm này sẽ được xem xét dựa trên độ an toàn, khả năng gây dị ứng, độc tính và dinh dưỡng của chúng hơn là dựa vào phương pháp và kỹ thuật sản xuất.
- Bất kỳ một chất mới nào được đưa thêm vào thực phẩm thông qua công nghệ sinh học đều phải được cho phép trước khi đưa ra thị trường,
Nhập môn Công nghệ sinh học 22
cũng giống việc các loại chất phụ gia mới như chất bảo quản hay màu thực phẩm cần phải được cho phép trước khi thương mại hóa.
Một số nhận định trong vấn đề an toàn thực phẩm hiện nay như sau: - Mức độ ăn toàn của thực phẩm chuyển gen ít nhất cũng tương đương với các thực phẩm khác bởi vì quá trình đánh giá an toàn đối với thực phẩm chuyển gen kỹ lưỡng hơn nhiều so với việc đánh giá các thực phẩm khác. Quá trình đánh giá an toàn thực phẩm đảm bảo rằng thực phẩm chuyển gen mang lại tất cả các lợi ích như thực phẩm thông thường và không có thêm một tác hại nào.
- Chưa có bằng chứng nào cho thấy thực phẩm chuyển gen hiện đang có trên thị trường gây ra bất cứ lo ngại nào về sức khoẻ con người hay có bất kỳ khía cạnh nào kém an toàn hơn so với cây trồng tạo được nhờ lai giống truyền thống.
- Một điểm đặc trưng của kỹ thuật chuyển gen là nó đưa vào một hay nhiều gen đã được xác định rõ. Điều này giúp cho việc thử nghiệm độc tính của các cây trồng chuyển gen dễ thực hiện hơn so với các cây trồng bình thường.
2.1. Các chất gây dị ứng
Một trong những mối quan tâm lớn nhất về thực phẩm chuyển gen là chất gây dị ứng (một protein gây ra dị ứng) có thể được chuyển vào thực phẩm. Đến nay các nhà khoa học đã biết rất nhiều về các thực phẩm gây ra dị ứng ở trẻ nhỏ và người trưởng thành. Khoảng 90% sự dị ứng thức ăn là có liên quan tới tám thực phẩm và nhóm thực phẩm-động vật có vỏ (tôm, cua, sò, hến), trứng, cá, sữa, lạc, đậu tương, quả hạch và lúa mỳ. Những loại thực phẩm này và rất nhiều chất gây dị ứng khác đã được xác định rất rõ và do vậy khó tin rằng chúng có thể được đưa vào thực phẩm chuyển gen.
Tuy vậy, việc kiểm tra tính dị ứng vẫn là một khâu quan trọng trong việc kiểm tra an toàn trước khi một giống cây trồng được đưa ra làm thực phẩm. Hàng loạt các thử nghiệm và câu hỏi phải được xem xét kỹ để quyết định liệu thực phẩm này có làm tăng sự dị ứng hay không.
Các chất gây dị ứng có những đặc tính chung như không bị phân hủy trong quá trình tiêu hóa, có xu hướng không bị phân hủy trong quá trình chế biến thực phẩm, và thường có rất nhiều trong thực phẩm. Cho đến nay,
Nhập môn Công nghệ sinh học 23
không có loại protein nào được chuyển vào thực phẩm chuyển gen đã được thương mại hóa lại mang những đặc tính nói trên. Chúng không có tiền sử và khả năng gây dị ứng hay độc tính, cũng không giống với các chất gây dị ứng hay các độc tố đã biết và nói chung chức năng của chúng đã được biết rõ. Những protein này có một hàm lượng rất thấp trong thực phẩm chuyển gen, nhưng nhanh chóng bị phân hủy trong dạ dày và đã được kiểm tra độ an toàn trong các nghiên cứu về thực phẩm cho động vật.
Các gen mã hóa thông tin di truyền có mặt trong tất cả các loại thực phẩm và việc ăn chúng không gây ra bất kỳ ảnh hưởng xấu nào. Không có tác hại di truyền nào xảy ra khi tiêu hóa DNA cả. Trên thực tế, chúng ta luôn nhận DNA mỗi khi ăn do nó có mặt ở tất cả thực vật và động vật.
2.2. Đánh giá độ an toàn của các thực phẩm
Bất kỳ một sản phẩm chuyển gen nào trước khi được đưa ra thị trường phải được thử nghiệm toàn diện, được các nhà khoa học và các giám định viên đánh giá độc lập xem có an toàn về dinh dưỡng, độc tính và khả năng gây dị ứng hay không. Các khía cạnh khoa học thực phẩm này dựa trên những quy định của các tổ chức có thẩm quyền của mỗi nước, bao gồm: một hướng dẫn sử dụng sản phẩm, thông tin chi tiết về mục đích sử dụng sản phẩm, các thông tin về phân tử, hóa sinh, độc tính, dinh dưỡng và khả năng gây dị ứng. Các câu hỏi điển hình có thể được đặt ra là: (1) Các thực phẩm chuyển gen có được tạo ra từ thực phẩm truyền thống đã được công nhận an toàn hay không. (2) Nồng độ các độc tố hay chất gây dị ứng trong thực phẩm có thay đổi hay không. (3) Hàm lượng các chất dinh dưỡng chính có thay đổi hay không. (4) Các chất mới trong thực phẩm chuyển gen có đảm bảo tính an toàn hay không. (5) Khả năng tiêu hóa thức ăn có bị thay đổi hay không. (6) Các thực phẩm có được tạo ra nhờ các quy trình đã được chấp nhận hay không.
Ngay khi các câu hỏi này và các câu hỏi khác về thực phẩm chuyển gen đã được trả lời, vẫn còn nhiều việc phải làm trong quá trình phê chuẩn trước khi thực phẩm chuyển gen được thương mại hóa. Thực tế, thực phẩm chuyển gen là loại sản phẩm được nghiên cứu nhiều nhất trong các loại đã được sản xuất.
Nhập môn Công nghệ sinh học 24
3. Đạo đức sinh học
Đạo đức sinh học (bioethics) là một phạm trù phức tạp mà cách nhìn nhận tùy thuộc vào đặc điểm dân tộc và văn hóa khác nhau. Cho nên, những vấn đề được coi là hợp với đạo đức ở nơi này có thể là trái đạo đức ở nơi khác. Thuật ngữ này có lẽ bắt nguồn ở Mỹ vào những năm 1970, khi các kỹ thuật thao tác gen (gene manipulation), còn gọi là kỹ thuật di truyền hay công nghệ DNA tái tổ hợp, được áp dụng.
Phạm trù đạo đức sinh học bao hàm cách đánh giá lợi ích và rủi ro liên quan tới sự can thiệp của con người, đặc biệt là công nghệ mới, xem xét làm cân đối sự theo đuổi quyền tự do cá nhân với trách nhiệm pháp lý. Đạo đức sinh học đòi hỏi phải đánh giá công nghệ thật kỹ, trong đó có đánh giá ảnh hưởng đến xã hội và cá nhân.
Cùng với thời gian, vấn đề này ngày càng trở nên sâu sắc. Trước những xáo trộn do sự phát triển của di truyền học, người ta tự hỏi mình đang tiến tới loại xã hội nào và sự cân bằng mới nào trên hành tinh sẽ được thiết lập.
Đạo đức sinh học không giới hạn suy nghĩ về mối quan hệ giữa khoa học và xã hội. Nó gắn liền quan hệ giữa con người với tự nhiên trong tính đa dạng sinh học của nó, kể cả bản chất của chính con người. Mặt khác, đạo đức sinh học là một cách suy nghĩ về tương lai và giá trị của chúng ta. Nó giúp cho giới chuyên môn đối thoại với những người ra quyết định và người dân, cùng quan tâm đến sự tồn tại của xã hội loài người.
Ngày 25/7/1978, bé gái được thụ tinh trong ống nghiệm (Louise Brown) đã ra đời ở Anh. Từ đó đến nay, kỹ thuật này đã tạo ra không biết bao nhiêu em bé như vậy trên thế giới, kể cả ở Việt Nam. Mục đích đầu tiên của công việc này là hoàn toàn lành mạnh. Trong trường hợp của Louise Brown, người mẹ bị vô sinh do khuyết tật ở vòi trứng nên để giúp bà có con, người ta đã lấy tế bào trứng của bà thụ tinh trong ống nghiệm với chính tinh trùng của chồng bà, rồi cấy hợp tử vào ngay tử cung của bà. Về mặt sinh học và pháp lý, em bé là con của họ và điều này cũng không đặt ra vấn đề gì về đạo đức hay vi phạm một điều luật nào.
Nhưng một vấn đề tế nhị và phức tạp khác lại được đặt ra nếu một phụ nữ không thể hoặc không muốn mang thai, đề nghị một phụ nữ khác nhận trứng được thụ tinh của mình và mang hộ cái thai đó, vậy đứa con sẽ là của ai. Cho đến nay, ở những nước có dịch vụ mang thai hộ đã phát sinh nhiều
Nhập môn Công nghệ sinh học 25
vụ kiện, vì người được thuê nhiều khi phá hợp đồng, không muốn trả lại đứa con cho người thuê nữa.
Một biểu hiện của chủ nghĩa ưu sinh dưới dạng mới, đó là người ta hy vọng có được những đứa con thiên tài bằng cách xin hoặc mua tinh trùng của các nhà bác học được giải thưởng Nobel, cho thụ tinh với trứng của những phụ nữ trẻ đẹp và thông minh rồi cấy phôi vào những phụ nữ này. Nhưng cách làm này không chắc chắn tuyệt đối do quy luật phân ly di truyền và đứa con sinh ra vẫn có thể thuộc loại tầm thường. Sau thành công nhân bản cừu Dolly, người ta hy vọng khắc phục được vấn đề trên bằng cách “nhân bản các thiên tài” nhờ chính tế bào của họ. Như ta đã biết, nhân bản người là một vấn đề rất khó và hiện nay hầu như bị cấm trên thế giới. Vả lại đồng nhất di truyền không có nghĩa là đồng nhất bản sắc cá nhân. Xét về mặt luân lý và đạo đức việc làm trên không thể chấp nhận được, còn về mặt khoa học cũng khó hiện thực: thiên tài chỉ biểu hiện ở một độ tuổi nào đó và nếu định cho ra thiên tài theo cách này cũng khó vì hình dạng và thể chất của người mẹ đã khác trước. Lại càng khó thực hiện nếu thông qua một phụ nữ xa lạ không phải là mẹ mình, vì hệ gen của tế bào chất trong trứng lạ cũng có ảnh hưởng và sẽ không phát huy được như của chính mẹ mình.
Hiện nay, sự phát triển nhanh chóng của công nghệ sinh học đã đặt cho các ủy ban đạo đức và luật pháp trên thế giới những vấn đề sau đây: - Có nên cho phép thay đổi chương trình di truyền của người hay không; và nếu cho phép thì ở mức độ nào, cho dù việc làm này được biện minh là để chữa các bệnh di truyền.
- Có nên chấp nhận việc chẩn đoán trước khi sinh để lựa chọn giới tính của đứa trẻ hay không.
- Có nên bắt buộc thực hiện các chương trình phát hiện di truyền phục vụ lợi ích sức khoẻ của người dân hay để mỗi cá nhân nhận xét cơ hội dựa vào các thử nghiệm mà kết quả có thể trái ngược, ảnh hưởng tới họ và người thân của họ (ví dụ việc sinh ra một đứa con có thể có rủi ro khuyết tật hay không).
- Có nên cấm liệu pháp gen (gene therapy) nhằm vào các tế bào sinh dục hay không. Theo Suleiman, giáo sư nghiên cứu các vấn đề quốc tế và giám đốc của Ủy ban nghiên cứu châu Âu (Đại học Princeton, Mỹ) thì “Nhà nước cần xác định mức độ can thiệp vào nghiên cứu khoa học qua tranh luận công khai nhằm hợp pháp hóa hành động cũng như để người dân kiểm
Nhập môn Công nghệ sinh học 26
soát các hành động này. Tóm lại, nhà nước cần hợp tác với cộng đồng khoa học để đảm bảo tự do nghiên cứu và ứng dụng hợp đạo đức các kết quả từ đó”.
4. Quyền tác giả và sở hữu trí tuệ
4.1. Quyền tác giả
Mặc dù đã có rất nhiều cuộc tranh luận ở các diễn đàn quốc tế về quyền tác giả của các nước có nguồn gen quý hiếm được phương Tây sử dụng trong công nghệ tạo giống nhưng đến nay vẫn chưa đem lại một kết quả thât sự nào. 169 nước đã đăng ký vào công ước Quốc tế về Đa dạng sinh học (Convention on Biological Diversity) và công ước này có hiệu lực từ 12/1993, trong đó quy định cùng chia sẻ quyền lợi giữa các nước có nguồn gen với các công ty phương Tây sử dụng nguồn gen đó. Tuy nhiên, từ đó đến nay các nước có nguồn gen quý hiếm vẫn tiếp tục bị mất dần tài sản quốc gia của mình mà quyền lợi được chia sẻ thì không đáng kể.
Chẳng hạn, năm 1994 hãng ArgEvo phân lập được gen PAT (phosphinothricin acetyltransferase) từ dòng vi khuẩn Streptomyces viridochromogens có trong mẫu đất lấy từ Camerun. Gen PAT cho phép tạo ra các giống cây trồng kháng thuốc diệt cỏ nhóm glufosinate, đóng góp quan trọng vào doanh số 2,3 tỷ USD của AgrEvo năm 1995. Tuy nhiên, hãng này đã từ chối không trả cho Camerun một khoản tiền nào về quyền tác giả.
Ngày 16/1/1996, Bản quyền sở hữu số 5.484.889 của Mỹ được cấp cho Giáo sư Sylvia Lee-Huang (Đại học New York) để bảo vệ quyền tác giả của ông về một loại protein chiết từ một giống mướp đắng (Momordica charantia) có nguồn gốc từ miền Nam Trung Quốc. Giống mướp đắng này là thành phần chính của một bài thuốc dân gian cổ truyền của Trung Quốc để chống nhiễm trùng. Lee-Huang đã cho rằng nhờ công nghệ DNA tái tổ hợp, từ nay ông không cần phải mua hạt mướp đắng từ Trung Quốc nữa, vì các protein tái tổ hợp sản xuất trong phòng thí nghiệm của ông hoàn toàn giống như protein chiết từ quả mướp đắng trước đây.
Các trường hợp trên cho thấy các công ty lớn ở các nước phát triển nhờ vào tiềm năng khoa học và nguồn vốn dồi dào của mình đã thương lượng về bản quyền tác giả với tư thế của kẻ mạnh. Sự thua thiệt của các nước yếu về công nghệ sinh học sẽ còn kéo dài.
Nhập môn Công nghệ sinh học 27
4.2. Sở hữu trí tuệ
Một trong những nét đặc trưng của công nghệ sinh học hiện đại là sự gia tăng tính sở hữu của nó. Hiện nay, ngành công nghệ sinh học được bảo vệ bởi các bằng sáng chế và các quyền về sở hữu trí tuệ (IPR).
Như chúng ta biết, sở hữu trí tuệ đại diện cho các sản phẩm của trí tuệ. Chúng là các ý tưởng được chuyển thành dạng hữu hình. Ví dụ của sở hữu trí tuệ bao gồm: các sáng chế, phần mềm máy tính, ấn phẩm, băng đĩa ca nhạc, giống cây trồng-vật nuôi... Để tạo ra những sản phẩm như vậy thường đòi hỏi một khoảng thời gian dài và một nguồn vốn đầu tư lớn. Do vậy, các nhà sáng chế thường tìm cách thu hồi các nguồn đầu tư bằng cách sử dụng IPR. IPR cho phép các sáng chế giới hạn quyền sử dụng sở hữu trí tuệ, không một cá nhân hoặc tổ chức nào được phép sử dụng để sản xuất, nuôi trồng, bán hay đề nghị để sáng chế mà không được cho phép. Có một số hình thức để bảo vệ các tác giả bao gồm: quyền tác giả, sáng chế, bí mật kinh doanh, nhãn hiệu hàng hóa, quyền bảo hộ giống cây trồng-vật nuôi...
Các bằng sáng chế, quyền bảo hộ giống cây trồng-vật nuôi và các nhãn hiệu hàng hóa được ban hành bởi chính phủ của từng quốc gia và sự bảo hộ chỉ có hiệu lực trong các nước mà sở hữu trí tuệ (IP) được ban hành. Do vậy, để nhận được sự bảo hộ ở nhiều nước, các quyền này phải được áp dụng và thông qua ở mỗi nước. Còn quyền tác giả và bí mật kinh doanh không đặc trưng theo quốc gia. Hiện nay, nhiều công nghệ mũi nhọn được sử dụng để tạo ra các sản phẩm công nghệ sinh học nông nghiệp dường như không được bảo hộ ở các nước đang phát triển. Chẳng hạn, các bằng sáng chế đối với promoter CaMV 35S chỉ được cấp và có hiệu lực ở Hoa kỳ và Châu Âu (và ở Nhật Bản chỉ có một đơn xin đăng ký cấp bằng). Do đó, hiện nay chưa có IP nghiêm cấm các nước đang phát triển sử dụng công cụ này trong nghiên cứu.
Hơn nữa, các tổ chức và cá nhân có thể sử dụng các công nghệ trong tạo giống cây trồng bao gồm triển khai, sản xuất và tiêu thụ ở các nước mà công nghệ sản xuất này chưa có IP bảo hộ. Tuy nhiên, các vấn đề liên quan đến IP sẽ phát sinh ở các nước có những công nghệ được bảo hộ bởi IPR. Thời gian phát triển sản phẩm cũng cần được cân nhắc kỹ lưỡng vì các bằng sáng chế có thể được cấp ở trong nước cùng thời điểm phát triển sản phẩm. Do vậy, các nhà khoa học ở các nước đang phát triển cần phải biết về các vấn đề liên quan đến IP và có phương án giải quyết thích hợp.
Nhập môn Công nghệ sinh học 28
Cây trồng được canh tác để sử dụng bền vững ở các nước đang phát triển và các công nghệ được áp dụng để tạo ra các cây trồng này đang nhận được rất ít sự quan tâm thương mại của khu vực kinh tế tư nhân. Trên thực tế, các công nghệ này đã và đang được chuyển giao nhằm tăng năng suất mùa vụ. Tuy nhiên, các nhà khoa học ở các nước đang phát triển cần thận trọng vì chuyển giao công nghệ liên quan đến nhiều vấn đề, không chỉ là ký kết các hợp đồng chuyển giao nguyên liệu và cấp giấy phép sử dụng cho một sản phẩm. Cả bên chuyển giao và bên tiếp nhận công nghệ phải thận trọng với các IPR liên quan đến công nghệ và điều này là cần thiết cho các đối tác để tạo sự tin tưởng lẫn nhau giữa các bên tham gia.
Các nước đang phát triển luôn thiếu năng lực và nguồn lực quản lý IP để tiến hành các phân tích và đánh giá về sự cho phép sử dụng công nghệ nhằm phát triển sản phẩm nhập khẩu, sử dụng hoặc xuất khẩu sản phẩm. Do vậy, để giúp chuyển giao các công nghệ ứng dụng trong nông nghiệp cho các nước đang phát triển, việc xây dựng khả năng quản lý IPR là rất quan trọng cho cả bên chuyển giao và bên tiếp nhận công nghệ. Cây trồng được canh tác để sử dụng bền vững ở các nước đang phát triển và các công nghệ được ứng dụng để tạo ra các cây trồng này rõ ràng nhận được ít sự quan tâm thương mại của khu vực kinh tế tư nhân. Trên thực tế các công nghệ này đã và đang được chuyển giao nhằm tăng năng suất mùa vụ.
Trong lĩnh vực công nghệ sinh học nông nghiệp, sáng chế có thể bao gồm: các phương pháp chuyển gen ở thực vật, các vector, các gen... Các sáng chế giữ vai trò quyết định nhất trong bảo hộ công nghệ sinh học nông nghiệp và được đánh giá là công cụ mạnh nhất trong hệ thống IP. Các sáng chế tạm thời, thường được bảo hộ trong khoảng 20 năm và tùy thuộc vào mỗi quốc gia.
Nói chung, các cơ quan nghiên cứu khoa học của chính phủ cần xây dựng năng lực quản lý sở hữu trí tuệ mà họ nhận được hay tạo ra. Kiến thức về IPR sẽ giúp các nhà khoa học của các nước đang phát triển xác định được các thông tin về một công nghệ nhất định đã thuộc quyền sở hữu công cộng và họ có quyền sử dụng. Hơn nữa, IP do các khu vực kinh tế nhà nước tạo ra có thể được xem xét là tài sản được trao đổi với các công ty tư nhân hoặc được sử dụng làm hàng hóa trong các đàm phán chuyển giao công nghệ. Sự hợp tác giữa các khu vực kinh tế nhà nước và tư nhân trong phát triển công
Nhập môn Công nghệ sinh học 29
nghệ nhờ chia sẻ bí quyết sản xuất và IP sẽ thúc đẩy sự chuyển giao công nghệ cũng như đem lại lợi ích cho cả hai bên.
Tài liệu tham khảo/đọc thêm
1. Nguyễn Ngọc Hải. 2005. Sinh học mạo hiểm. NXB Thanh niên, Hà Nội. 2. Nguyễn Văn Uyển và Nguyễn Tiến Thắng. 1999. Những kiến thức cơ bản về công nghệ sinh học. NXB Giáo dục, Hà Nội.
3. Bains W. 2003. Biotechnology from A to Z. Oxford University Press Inc. New York, USA.
4. Borém A, Santos FR and Bowen DE. 2003. Understanding Biotechnology. Prentice Hall PTR, New Jersey, USA.
5. Ratledge C and Kristiansen B. 2002. Basic Biotechnology. Cambridge University Press, UK.
6. Shantharam S and Montgomery JF. 1999. Biotechnology, Biosafety, and Biodiversity: Scientific and Ethical Issues for Sustainable Development. Science Publisher Inc. USA.
Nhập môn Công nghệ sinh học 30
Chương 2
Công nghệ DNA tái tổ hợp
I. Mở đầu
Công nghệ DNA tái tổ hợp được hình thành từ những năm 1970 nhờ sự phát triển của các phương pháp và kỹ thuật dùng trong nghiên cứu các quá trình sinh học ở mức độ phân tử. Từ đó, cho phép phân lập, phân tích và thao tác trên các nucleic acid theo nhiều phương thức khác nhau, giúp hiểu biết sâu sắc các lĩnh vực mới của sinh học như công nghệ sinh học, bào chế các loại thuốc mới, y học phân tử và liệu pháp gen.
Sự khám phá ra các enzyme hạn chế (restriction endonuclease) trong những năm đầu 1970 là sự phát triển then chốt (key development) không chỉ cho khả năng phân tích DNA hiệu quả hơn, mà còn cung cấp khả năng cắt các phân tử DNA để tạo ra các đoạn DNA tái tổ hợp mới, một quá trình mà ngày nay được gọi là tạo dòng gen (gene cloning). Phương thức tạo dòng này đã báo hiệu một kỷ nguyên mới trong thao tác, phân tích và khai thác các phân tử nucleic acid.
Tạo dòng gen đã cho ra nhiều phát minh quan trọng và cung cấp những hiểu biết giá trị trong cấu trúc, chức năng và sự điều hòa hoạt động của gen. Từ những ứng dụng đầu tiên của chúng, các phương pháp xây dựng thư viện gen (gene library) được hình thành và phát triển, và hiện nay được xem như là nền tảng cơ sở cho nhiều thí nghiệm hóa sinh và sinh học phân tử. Mặc dù phản ứng chuỗi polymerase (polymerase chain reaction-PCR) để khuếch đại gen cho phép phân tích gen nhanh hơn nhưng trong nhiều trường hợp kỹ thuật tạo dòng gen vẫn còn hữu ích và là một yêu cầu tuyệt đối. Những phần dưới đây cung cấp một bức tranh tổng quát về các quá trình cơ bản của công nghệ DNA tái tổ hợp.
II. Phân lập đoạn DNA/gen
Một số phương pháp phân lập gen để thực hiện kỹ thuật tái tổ hợp DNA đã được sử dụng là:
Nhập môn Công nghệ sinh học 31
1. Tách các đoạn DNA từ genome
Phương pháp này được thực hiện như sau: DNA hệ gen (genomic DNA) của một sinh vật được cắt thành các đoạn nhỏ dài khoảng 20 kb (kích thước thích hợp tùy thuộc vào loại vector nhận chúng) bằng enzyme hạn chế rồi gắn vào vector để xây dựng thư viện genome (genomic library).
Escherichia coli Saccharomyces cerevisiae
.
Thông thư
4 bp, ví dụ như Mbo - -
.
(clone).
.
Nhập môn Công nghệ sinh học 32
(physical mapping).
2. Sinh tổng hợp cDNA từ mRNA
Đoạn DNA được tổng hợp dựa trên khuôn mẫu mRNA được gọi là cDNA (complementary DNA). ba như sau:
- .
- - 2 (Mg2+
.
- .
mRNA-cDNA (khi tổng hợp sợi th E. coli
(đ
E. coli
5
.
- 1.
. Sợi đ
bacteriophage (cDNA library).
3. Phân lập đoạn DNA bằng phương pháp PCR
Ngoài hai phương pháp trên, hiện nay người ta sử dụng rất phổ biến phương pháp PCR để phân lập một trình tự nucleotide (gen) từ genome của
Nhập môn Công nghệ sinh học 33
sinh vật dựa trên các primer đặc hiệu cho trình tự đó. Phương pháp PCR đơn giản và ít tốn thời gian hơn hai phương pháp trên, mà hiệu quả vẫn rất cao.
Sinh tan tế bào
Mô
(ví dụ: não)
5’
5’
và tinh sạch mRNA
Gắn oligo(dT) primer
Tổng hợp sợi cDNA thứ
AAAAAA 3’ mRNA
AAAAAA 3’ mRNA TTTTTT
Reverse transcriptase
5’
3’
nhất trên khuôn mẫu mRNA
Biến tính nhiệt và xử lý RNase H để phá hủy sợi mRNA
AAAAAA 3’ mRNA
TTTTTT 5’ sợi cDNA thứ nhất TTTTTT 5’
Đầu 3’ của cDNA tạo
thành vòng cặp tóc
DNA polymerase I Tổng hợp sợi cDNA thứ hai
AAAAAA 3’
TTTTTT 5’
Nuclease S1
5’
3’
2.1.
AAAAAA 3’
TTTTTT 5’ cDNA sợi đôi
PCR là một kỹ thuật được sử dụng phổ biến trong công nghệ sinh học hiện đại và đã đóng góp rất lớn cho những tiến bộ về sinh học phân tử, đánh dấu một bư
các enzyme hạn chế và kỹ thuật Southern blot (phân tích DNA).
Nhập môn Công nghệ sinh học 34
in vitro đ
- đ
20 nucleotide.
▪ Nguyên tắc của PCR
Taq polymerase là một loại enzyme DNA polymerase chịu nhiệt (có ở vi khuẩn chịu nhiệt độ cao Thermus aquaticus
tide (dATP,
dCTP, dGTP và dTTP) và hai primer, trên cơ sở khuôn mẫu của một đoạn DNA nhất
, nhờ vậy có thể đủ số lượng để
tách ra, phân tích trình tự hoặc tạo dòng. P
DNA 3’ -
5’
- ).
Nguyên tắc của PCR được trình
đầu tạo ra các đoạn DNA có chiều dài xác
định. Nếu biết trình tự của đoạn gen cần khuếch đại thì có thể tổng hợp nhân tạo các primer tương ứng để thực hiện PCR và tách chúng ra bằng kỹ thu - , qua đó từ 10-6g
DNA ban đầu có thể khuếch đại lên tới trên 1
PCR bao gồm ba giai đoạn có nhiệt độ khác nhau:
- Gây biến tính (denaturation) ở 90-95oC. Trong giai đoạn biến tính, phân tử DNA khuôn mẫu ở dạng xoắn kép được tách thành hai sợi đơn (single strands). Tất cả các phản ứng enzyme trong giai đoạn này đều bị dừng lại (ví dụ: phản ứng tổng hợp DNA từ chu kỳ trước đó).
- Gắn primer (annealing) ở 40-65oC. Trong giai đoạn này các primer gắn vào các vị trí có trình tự tương đồng ở DNA khuôn mẫu. Các primer bị lắc nhẹ chung quanh do chuyển động Brown vì thế các liên kết ion được tạo thành và bị đứt gãy liên tục giữa primer sợi đơn và DNA khuôn mẫu sợi đơn. Các liên kết ion ổn định hơ đoạn nhỏ (các primer đ
Nhập môn Công nghệ sinh học 35
) và trên các đ đôi đó (khuôn mẫu và primer) enzyme Taq polymerase có thể bắt đầu quá trình sao chép khuôn mẫu.
Gen đích
DNA khuôn mẫu
Khuếch đại theo hàm mũ
Chu kỳ 35
22 = 4 23 = 8 24 = 16 236 = 68 tỷ bản sao bản sao bản sao bản sao
Hình 2.2. Sơ đ phản ứng chuỗi polymerase (PCR)
- Kéo dài phân tử (extension) ở 70-72oC. Đây là khoảng nhiệt độ tối thích cho Taq polymerase tiến hành tổng hợp DNA bắt đầu từ các vị trí có primer theo chiều 5’ 3’. Các primer
có mối liên kết ion mạnh hơn các lực phá v
. Các primer ở các vị trí không bắt cặp chính xác lại bị rời ra (do nhiệt đ . Enzyme Taq polymerase bổ sung các dNTP từ 5’ 3’.
III. Tạo dòng (gắn) đoạn DNA/gen vào vector
1. Enzyme hạn chế
Việc phát hiện ra các enzyme hạn chế (restriction enzyme) của vi khuẩn cắt DNA ở những trình tự đặc trưng, đã giúp cho việc thao tác gen dễ dàng hơn, vì nó có thể giảm chiều dài của các phân tử DNA thành một tập hợp bao gồm các đoạn ngắn hơn.
Các enzyme hạn chế hiện diện trong hầu hết các tế bào vi khuẩn để ngăn cản DNA ngoại lai (của bacteriophage) tiếp quản bộ máy tổng hợp
Nhập môn Công nghệ sinh học 36
protein của tế bào. DNA của chính chúng sẽ được bảo vệ khỏi tác dụng của enzyme hạn chế, nhờ sự có mặt của các enzyme nội bào có thể methyl hóa (methylation) các nucleotide đặc biệt, vì thế các nucleotide này không thể bị nhận biết bởi các enzyme hạn chế.
Mỗi enzyme hạn chế nhận biết và cắt một trình tự DNA đặc trưng chứa 4 hoặc 6 cặp nucleotide. Ví dụ: enzyme EcoRI chiết từ E. coli cắt trình tự GAATTC, enzyme TaqI của Thermus aquaticus cắt trình tự TCGA (Hình 2.3). Hiện nay, có trên 900 enzyme hạn chế khác nhau đã được tinh sạch từ hơn 230 chủng vi khuẩn. Các enzyme hạn chế cắt gãy các phân tử DNA sợi đôi theo hai cách khác nhau như trình bày ở hình 2.3:
PvuII (Proteus vulgaris) EcoRI (Escherichia coli)
(A1) (A2)
RsAI (Rhodopseudomonas sphaeroides) TaqI (Thermus aquaticus) (B1) (B2)
Hình 2.3. Các kiểu cắt và nhận biết trình tự nucleotide của enzyme hạn chế. (A1): tạo ra đầu bằng và (A2): tạo ra đầu so le với trình tự 6 nucleotide. (B1): tạo ra đầu bằng và (B2): tạo ra đầu so le với trình tự 4 nucleotide.
- Cắt trên một đường thẳng đối xứng để tạo ra các phân tử đầu bằng (Hình 2.3, A1 và B1).
Nhập môn Công nghệ sinh học 37
- Cắt trên những vị trí nằm đối xứng quanh một đường thẳng đối xứng để tạo ra những phân tử đầu so le (đầu dính) (Hình 2.3, A2 và B2). Vì một enzyme hạn chế nhận biết một trình tự duy nhất, cho nên số vị trí cắt trên một phân tử DNA đặc biệt thường là nhỏ. Các đoạn DNA được cắt bởi enzyme hạn chế có thể được phân tách theo kích thước bằng điện di agarose gel để nghiên cứu. Do sự tương tự của tổ chức phân tử trong tất cả các cơ thể, cho nên DNA vi khuẩn, DNA thực vật và DNA động vật có vú tương hợp nhau về cấu trúc. Vì thế, một đoạn DNA từ một dạng sống này có thể dễ dàng được pha trộn với DNA của một dạng sống khác. Sự tương tự này cũng phù hợp đối với plasmid, nhân tố di truyền ngoài nhân được tìm thấy trong nhiều loài vi khuẩn khác nhau. Chúng là những phân tử DNA mạch vòng đóng-sợi đôi được dùng làm vector mang các đoạn DNA ngoại lai (foreign DNA) dùng trong kỹ thuật tái tổ hợp DNA.
2. Các vector được dùng để tạo dòng các đoạn DNA
in vitro
5’-PO4 .
.
Trong thực tế, các đoạn DNA được gắn với nhau để tạo ra phân tử DNA tái tổ hợp thường không phải là các đoạn ngẫu nhiên của DNA hệ gen, mà thay vào đó là một trong các đoạn DNA mang một gen từ sinh vật eukaryote hoặc vi khuẩn và một đoạn DNA khác thường là một phân tử vector (vector molecule) hoạt động như là một vật truyền để chuyển gen quan tâm vào trong một vi khuẩn hoặc một tế bào eukaryote. Hai loại vector được sử dụng phổ biến nhất là một loại có nguồn gốc từ các plasmid của vi
Nhập môn Công nghệ sinh học 38
khuẩn và một loại khác có nguồn gốc virus xâm nhiễm vào tế bào vi khuẩn (bacteriophage, viết tắt là phage).
2.1. Plasmid vector
1-
.
đặc đ
.
đư
i) hay multiple cloning sites (vùng
3-
:
- . 2.600 bp, mang gen Amprvà gen lacZ’ lacZ’
.
N có ưu điểm k
lacZ’
.
- . 3.000 bp, mang gen Ampr, gen lacZ
.
- .
2.6).
Nhập môn Công nghệ sinh học 39
400 420 440 460 AGTGAATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGACCTGCAGGCATGCAAGCTTGGCATAATCATGGTCAT EcoRI SacI KpnI BamHI XbaI HincII PstI SphI HindIII
SmaI
XmaIAccI SalI
1 lacZ’ ThrIleMetThr(Met)
2.4. Plasmid vector pUC19. Vùng tạo dòng (từ 396-447) được gắn vào gen lacZ’, nhưng không can thiệp vào chức năng của gen.
2.5. Plasmid vector pGEM -T Easy. Loại vector này đã được mở sẵn ở vùng tạo dòng trên gen lacZ mang hai đầu T, thích hợp cho việc gắn các sản phẩm PCR do chúng có mang hai đầu A.
Nhập môn Công nghệ sinh học 40
ApaI
EcoO1091
BssHII T7 Promoter KpnI DraII XhoI SalI
TTGTAAAACGACGGCCAGTGAGCGCGCGTAATACGACTCACTATAGGGCGAATTGGGTACCGGGCCCCCCCTCGAGGTCGAC…
M13-20 primer binding site T7 primer binding site KS primer binding site…
Bsp1061 NotI
ClaI HindIII EcoRV EcoRI PstI SmaI BamHI SpeI XbaI EagI BstXI SacII SacI …GGTATCGATAAGCTTGATATCGAATTCCTGCAGCCCGGGGGATCCACTAGTTCTAGAGCGGCCGCCACCGCGGTGGAGCTC… …KS primer binding site… SK primer binding site
T3 Promoter BssHII β-gal α-fragment
…CAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGCGCTTGGCGTAATCATGGTCATAGCTGTTTCC
T3 primer binding site M13 reverse primer binding site
2.6. Plasmid vector pBluescript II SK (+/-). Vector này mang vùng tạo dòng (multiple cloning sites-MCS) ở vị trí từ 598-826 trên gen lacZ’, và các vị trí gắn primer khác nhau dùng cho phân tích trình tự đoạn DNA ngoại lai.
, DNA của plasmid được
in vitro
- (
của plasmid (ligation).
Nhập môn Công nghệ sinh học 41
2.2. Bacteriophage vector
Có hai loại bacteriophage thường được sử dụng là và M13, tuy nhiên chương này chỉ trình bày loại phổ biến hơn là bacteriophage . Bacteriophage
cos
cos (R-cos và L-cos)
(lysis)
).
Vùng điều hòa
Các gen hình
chức năng muộn
thành đầu, đuôi và phát sinh hình thái
Vùng hợp nhất và tái tổ hợp (vùng đệm)
Vùng điều hòa và miễn dịch
Vùng sao chép DNA
Vùng phân giải vật chủ
L-cos
A…………J b att int xis red gam cIII N cI cro cII O P Q S R PL PR ori
R-cos
A W B C D E FI FII Z U V G T H M L K I
J Đầu Đuôi
2.7. λ genome. Các gen liên quan đến các chức năng khác nhau đã được trình bày trên sơ đồ. cIII, N, cI, cro và cII: các gen liên quan đến hoạt động điều hòa, miễn dịch tiền phage, siêu nhiễm. O và P: các gen tổng hợp DNA. Q: gen điều hòa chức năng muộn. S và R: các gen phân giải tế bào vật chủ. PL: promoter bên trái, PR: promoter bên phải, L-cos: đầu dính bên trái, R-cos: đầu dính bên phải.
(recipient). Phage vector
Nhập môn Công nghệ sinh học 42
-
.
khoảng 1/3 chiều dài của phage
phage
. Trên
phage vector
in vitro (in vitro
(Hình 2.8).
SalI BamHI EcoRI
EcoRI
BamHI
SalI
Nhánh trái (20 kb) Vùng đệm (14 kb) Nhánh phải (9 kb)
5’…GGATC TGGGT CGACG GATCC GGGGA ATTCC CAGAT CC…3’ SalI BamHI EcoRI
Hình 2.8. Vector EMBL 3. Vector này được thiết kế từ phage mang các vị trí nhận biết cho ba enzyme SalI, BamHI và EcoRI.
3. Gắn đoạn DNA vào vector
3.1. Gắn các đoạn cDNA
đư
, chẳng hạn như: b
Nhập môn Công nghệ sinh học 43
(homopolymetric tailing)
(linkers và adapter)
.
vector. Sợi đ
(ví dụ: đoạn Klenow của DNA polymerase
I của E. coli
ase 3’ -
(polymerase 5’ 3’
.
.
3.1.2. Các adapter
vector DNA .
Nhập môn Công nghệ sinh học 44
cDNA sợi đôi
Sửa chữa bằng cách xử lý với đoạn Klenow
Bổ sung linker thứ nhất
Cắt bằng nuclease S1
Sửa chữa bằng cách xử lý với đoạn Klenow hoặc
bằng DNA polymerase của bacteriophage T4
Bổ sung linker thứ hai
Cắt bằng enzyme hạn chế
Gắn với plasmid vector
Biến nạp vào tế bào khả biến E. coli
2.9. . Đoạn Klenow tạo đầu bằng cho cDNA sợi đôi và enzyme nuclease S1 cắt vòng cặp tóc. Các linker thứ nhất và thứ hai được gắn tuần tự vào hai đầu của cDNA, sau đó đoạn cDNA này sẽ được cắt cùng enzyme hạn chế với vector tạo dòng có vị trí nhận biết trên hai linker nhân tạo. Cuối cùng đoạn cDNA có hai đầu tương đồng được gắn với vector và biến nạp vào E. coli.
Nhập môn Công nghệ sinh học 45
3.2. Gắn các sản phẩm PCR
Trong một số trường hợp nhất định có thể thay thế phương pháp tạo dòng truyền thống bằng phương pháp PCR, vì PCR cho phép sản xuất ra một lượng lớn đoạn DNA mong muốn và sau đó có thể tạo dòng đoạn DNA này trong các vector plasmid hoặc phage thích hợp. Phương thức tạo dòng cho các sản phẩm PCR hoàn toàn giống tạo dòng các đoạn DNA thu được từ những thao tác DNA truyền thống, và có thể được tạo dòng với đầu bằng hoặc đầu kết dính (so le). DNA polymerase ổn nhiệt như Taq polymerase đã khuếch đại các sản phẩm PCR có gốc A lồi ra ở đầu 3’. Như vậy, có thể tạo dòng sản phẩm PCR vào trong các dT vector (được gọi là tạo dòng dA:dT). Điều này cho thấy việc bổ sung các gốc A vào đầu cuối có thể giúp gắn thành công sản phẩm PCR với vector đã được chuẩn bị các gốc T lồi ra (Hình 2.10). Phản ứng được xúc tác bởi DNA ligase, như trong một phản ứng gắn truyền thống.
A
A
Sản phẩm PCR được khuếch đại bằng Taq polymerase
T
Vector (dT)
T
Phản ứng gắn T4 DNA ligase
Vector (dT) + đoạn chèn PCR
Hình 2.10. Tạo dòng các sản phẩm PCR bằng phương thức tạo dòng dA:dT
Người ta cũng có thể tạo dòng đầu dính với các sản phẩm PCR. Trong trường hợp này các oligonucleotide primer được thiết kế với một vị trí cắt hạn chế được kết hợp chặt chẽ trong chúng. Do sự bổ trợ của các primer cần thiết là tuyệt đối ở đầu 3’, nên thông thường đầu 5’ của primer là vùng định
Nhập môn Công nghệ sinh học 46
vị của vị trí cắt hạn chế. Điều này cần phải được thiết kế với sự chú ý thận trọng do hiệu suất cắt DNA bằng một enzyme hạn chế nhất định sẽ giảm nếu các nucleotide bổ sung thêm cho sự nhận biết của enzyme lại thiếu ở đầu 5’. Trong trường hợp này các phản ứng cắt và gắn giống như các phản ứng truyền thống.
4. Biến nạp vector tái tổ hợp vào vi khuẩn/tế bào vật chủ
Sau khi tạo được vector tái tổ hợp mang gen ngoại lai, việc tiếp theo là biến nạp nó vào tế bào vật chủ. Trong trường hợp này tế bào vật chủ thường được sử dụng là vi khuẩn E. coli để khuếch đại một lượng lớn DNA của plasmid tái tổ hợp dùng cho các phân tích về sau.
Hai phương pháp được dùng để biến nạp vector tái tổ hợp vào E. coli là điện biến nạp (electroporation transformation) và hóa biến nạp (chemical transformation).
4.1. Điện biến nạp
Đây là kỹ thuật hiệu quả nhất để biến nạp vi khuẩn. Hai thông số quan trọng của phương thức này là loại tế bào vi khuẩn và tần số xung điện cần thiết. Thể tích của dung dịch tế bào thường được dùng là 30 µL (tương ứng với nồng độ 1010 tế bào E. coli/mL) có bổ sung 5 ng plasmid trong một cuvette có khoảng trống điện cực (electrode gap) 0,1 cm. Hiệu suất biến nạp của phương thức này lớn hơn 1 109thể biến nạp/µg plasmid siêu xoắn và khoảng 1 108thể biến nạp/µg plasmid được dùng trong phản ứng gắn. Tần số biến nạp khoảng 0,02 cho cả hai loại plasmid. Tần số biến nạp thấp đã ngăn cản được sự đồng biến nạp (co-transformation) vào vi khuẩn của hai hoặc nhiều phân tử plasmid.
Phương pháp điện biến nạp có một số ưu điểm sau:
- Hiệu suất biến nạp cao.
- Có thể dùng một thể tích dịch tế bào nhỏ. Thể tích dịch tế bào khoảng 20 µL có thể cho hiệu suất khoảng 109 thể biến nạp. - Phương pháp chuẩn bị tế bào biến nạp rất đơn giản, không sử dụng các kỹ thuật phức tạp và tốn thời gian. Hơn nữa, các tế bào dùng để biến nạp có thể được chuẩn bị trước và bảo quản vô hạn định mà không mất tính khả biến.
Nhập môn Công nghệ sinh học 47
- Tần số điện biến nạp với DNA siêu xoắn và DNA mạch vòng là giống nhau. Do đó, không cần thiết phải dùng vector được tinh sạch cao trong các phản ứng gắn.
- Hiệu suất biến nạp phân tử cho DNA mạch vòng rất cao đối với các plasmid có kích thước lên đến 50 kb.
Nhược điểm của phương pháp này là đòi hỏi thiết bị biến nạp đắt tiền.
4.2. Hóa biến nạp
Đây là phương thức kinh điển để biến nạp plasmid vào tế bào E. coli. Các tế bào được ủ trong dung dịch CaCl2 để trở thành tế bào khả biến giúp cho chúng dễ tiếp nhận plasmid. Plasmid được đưa vào bằng cách shock nhiệt nhanh (40-50 giây), các tế bào biến nạp sau đó được chọn lọc bằng phương pháp chọn lọc dương tính trên đĩa agar chứa môi trường LB với kháng sinh thích hợp. Mỗi khuẩn lạc trên đĩa kháng sinh đại diện cho một thể biến nạp đơn. Các tế bào chứa plasmid mang DNA ngoại lai có thể xác định bằng mắt trên đĩa môi trường có bổ sung thêm cơ chất nhiễm sắc thể cho β-galactosidase (X-gal) vì chúng là các khuẩn lạc không màu do sự khử hoạt tính của enzyme bằng cách chèn đoạn DNA ngoại lai.
Phương pháp chuẩn bị và bảo quản tế bào khả biến trong hóa biến nạp cũng rất đơn giản. Hiệu suất biến nạp của phương pháp này trong khoảng 104-106thể biến nạp/µg plasmid, tùy thuộc vào kích thước của đoạn DNA chèn (DNA ngoại lai) và chủng vi khuẩn được sử dụng. Hiệu suất này thích hợp cho các phương thức tạo dòng truyền thống. Đối với các phương thức cần hiệu suất biến nạp cao hơn (ví dụ: xây dựng thư viện cDNA, xây dựng thư viện phân tích trình tự DNA...) thì tốt hơn hết là dùng phương pháp điện biến nạp. Tuy nhiên, nếu không có sẵn thiết bị biến nạp bằng điện thì vẫn có thể thu được hiệu suất biến nạp cao bằng cách dùng các chủng vi khuẩn thích hợp hơn cho mục đích này và có thể thu được hiệu suất 109thể biến nạp/µg plasmid.
IV. Chọn dòng mang DNA tái tổ hợp
Trong thí nghiệm tạo vector tái tổ hợp, hỗn hợp vector và một lượng lớn phân tử DNA cắt cùng một enzyme hạn chế được gắn lại với nhau bằng enzyme DNA ligase. Kết quả, hỗn hợp này có plasmid tái tổ hợp lẫn các
Nhập môn Công nghệ sinh học 48
plasmid không có gen ngoại lai chèn vào và chúng được trộn lẫn với các tế bào vi khuẩn để thực hiện biến nạp. Sau đó, người ta chuyển tất cả lên môi trường dinh dưỡng chọn lọc để chúng phát triển thành các dòng tức các khuẩn lạc vi khuẩn. Do cách tiến hành thí nghiệm trong một hỗn hợp không đồng nhất như vậy nên các dòng vi khuẩn mọc lên có ba loại như sau:
- Tế bào vi khuẩn không nhận plasmid.
- Tế bào vi khuẩn nhận plasmid không có gen ngoại lai chèn vào. - Tế bào vi khuẩn nhận đúng plasmid tái tổ hợp.
Vì vậy, việc xác định đúng các dòng vi khuẩn chứa plasmid tái tổ hợp phải mất nhiều công sức. Có ba phương thức chính để xác định các dòng DNA tái tổ hợp là lai khuẩn lạc và vết tan, khử hoạt tính bằng chèn đoạn, và tạo dòng định hướng.
1. Lai khuẩn lạc và vết tan
DNA được tạo dòng trong plasmid sản xuất ra các khuẩn lạc khi các nuôi cấy biến nạp được dàn mỏng trên đĩa agar chứa môi trường sinh trưởng và nuôi cấy dưới những điều kiện thích hợp. Các bacteriophage sinh tan tế bào bị chúng xâm nhiễm và sản xuất ra các plaque (vết tan) có dạng hình tròn chu vi khoảng 2-3 mm có màu sáng trên thảm vi khuẩn (bacterial lawn) của lớp agar đỉnh [trong trường hợp này người ta chuẩn bị đĩa agar có hai lớp: lớp agar đỉnh (top agar) có nồng độ agar thấp để bacteriophage dễ sinh tan tế bào vi khuẩn, và lớp agar đáy (bottom agar) có nồng độ agar cao hơn].
Các vector, như mô tả ở trên, thường chứa gen chỉ thị cho phép chọn lọc những tế bào vật chủ mang vector (thể biến nạp). Các chỉ thị này thường là gen kháng kháng sinh và các tế bào biến nạp sinh trưởng trên môi trường chứa kháng sinh tương ứng.
Ngoài ra, các vector còn chứa các gen chỉ thị bổ sung để phân biệt các tế bào biến nạp chứa đoạn chèn của DNA ngoại lai với các tế bào chứa các vector tự tái tạo lại vòng. Ví dụ: gen lacZ mã hóa enzyme β-galactosidase.
Một dòng chứa các chuỗi DNA quan tâm đặc biệt có thể được xác định bởi lai khuẩn lạc hoặc vết tan. Một lượng nhỏ khuẩn lạc biến nạp hoặc vết tan được chuyển lên màng nitrocellulose hoặc nylon bằng cách phủ (overlay) màng này lên trên đĩa agar. DNA được biến tính và cố định trên màng bằng cách đun nóng (baking) hoặc chiếu tia tử ngoại (UV-
Nhập môn Công nghệ sinh học 49
crosslinking), và sau đó được lai trong đệm chứa probe đánh dấu đồng vị phóng xạ có trình tự bổ trợ một phần hoặc toàn bộ của chuỗi được xác định. Ví dụ: có thể một oligonucleotide tổng hợp nhân tạo, có nguồn gốc từ DNA hệ gen từng phần, cDNA hoặc trình tự protein hoặc sản phẩm PCR. Một đôi khi probe có thể được thiết kế dựa trên trình tự bắt nguồn từ gen tương đồng của các loài khác và thường được lai với cường lực thấp. Các probe thừa được rửa khỏi màng để ủ với phim X-quang. Theo hướng của phim (sau khi rửa) so sánh với đĩa agar gốc, chúng ta có thể đối chiếu các khuẩn lạc/vết tan thực tế với các khuẩn lạc/vết tan lai dương tính (positive clones) tương ứng trên phim X-quang.
(ví dụ: Ampr, lacZ của cắt bởi
E. coli
-galactosidase của gen lacZ
-
-gal sẽ có màu trắng do đoạn DNA ngoại lai chèn vào giữa gen lacZ lacZ không bị mất hoạt tính (Hình 2.11).
Hin Bam
của vector
Bam Hin
đ E. coli
(protruding ends) Hin Bam
E. coli
Nhập môn Công nghệ sinh học 50
- .
Amp r
lacZ
BamHI
BamHI BamHI BamHI
Amp r
Plasmid vector DNA ngoại lai
Gen lacZ mất hoạt tính
DNA ligase
Amp r
lacZ
Ampr
Đoạn DNA ngoại lai
chèn giữa gen lacZ làm gen lacZ mất hoạt tính
Biến nạp vào E. coli và cho sinh trưởng ở 37oC trên môi trường có Amp và IPTG+X-gal
Vi khuẩn E. coli chứa vector tái tạo vòng phát triển thành khuẩn lạc có màu xanh
Vi khuẩn E. coli chứa vector tái tổ hợp phát triển thành khuẩn lạc có màu trắng
Hình 2.11. Khử hoạt tính bằng chèn đoạn. Ampr: gen kháng ampicillin, lacZ: gen lacZ mã hóa enzyme β-galactosidase.
Về mặt lý thuyết, kỹ thuật tái tổ hợp DNA cho phép đưa bất kỳ một đoạn gen nào từ sinh vật này vào sinh vật khác. Vấn đề quan trọng tiếp theo là làm sao để các gen lạ đó có sự biểu hiện.
Nhập môn Công nghệ sinh học 51
Amp r
Tet r
HindIII BamHI
HindIII BamHI HindIII
Plasmid vector DNA ngoại lai Amp r
H
B
H B
Điện di agarose gel
Amp r
Tet s
H B B H
H
B
Amp r
Tet s
T4 DNA ligase
Amp r
H
Tet s B
Các thể biến nạp được dàn mỏng trên môi trường có Amp
H B
Tet s
Hiệu suất biến nạp thấp
Hiệu suất biến nạp cao
Hình 2.12. Tạo dòng định hướng. Tet r: gen kháng tetracycline, Tet s: gen kháng tetracycline bị khuyết đoạn và mất hoạt tính.
V. Biểu hiện của gen được tạo dòng
Muốn gen tạo dòng có biểu hiện tổng hợp protein cần cấu tạo vector có đủ các yếu tố phiên mã và dịch mã. Các vector này được gọi là vector
Nhập môn Công nghệ sinh học 52
biểu hiện. Nếu gen không nằm giữa promoter và terminator, nó sẽ không được phiên mã. Các gen được tổng hợp hóa học hay từ cDNA không có promoter nên phải gắn chúng cạnh promoter thì mới có thể biểu hiện phiên mã. Để sự dịch mã được thực hiện, mRNA cần phải mang ở đầu 5’ trình tự RBS (ribosome binding sites-vùng liên kết ribosome). Đoạn gen ngoại lai thiếu điểm bám của ribosome (RBS), do đó muốn được dịch mã thì nó phải gắn vào vị trí nằm sau promoter và RBS.
Ở một số gen của sinh vật eukaryote, sự dịch mã đòi hỏi quá trình splicing tức là cắt bỏ các đoạn intron khỏi tiền thân mRNA thông tin (premature mRNA) và nối các exon lại với nhau để tạo thành mRNA hoàn chỉnh (mature mRNA).
Mục đích việc tạo dòng các gen của động vật có vú, nhất là của người, là nhằm tạo ra các sản phẩm đúng như trong cơ thể với số lượng lớn và có giá trị thương mại. Sự biểu hiện của các gen eukaryote trong tế bào vi khuẩn nhiều khi gặp trở ngại, do đó cần phải thiết kế các vector biểu hiện thích hợp cho phép gen ngoại lai biểu hiện ở mức độ cao.
1. Vector biểu hiện
E. coli
E. coli
. Để biểu hiện tất cả các gen ngoại lai trong E.
coli phải bắt đầu bằng việc gắn đoạn gen ngoại lai vào trong vector biểu hiện (thường là plasmid). Vector này phải có đủ các cấu trúc cần thiết sau: - Các trình tự mã hóa gen chỉ thị chọn lọc (selectable marker) để đảm bảo duy trì vector trong tế bào.
- Một promoter kiểm soát phiên mã (ví dụ: lac, trp hoặc tac) cho phép sản xuất một lượng lớn mRNA từ các gen được tạo dòng.
- Các trình tự kiểm soát dịch mã như vùng liên kết ribosome được bố trí thích hợp và codon khởi đầu ATG.
- Một polylinker để đưa gen ngoại lai vào trong một hướng chính xác với promoter.
Nhập môn Công nghệ sinh học 53
Chỉ khi được cấu trúc đầy đủ như thế, các vector biểu hiện mang gen ngoại lai mới được biến nạp vào chủng E. coli thích hợp.
Tuy nhiên, cần lưu ý là số lượng các bản sao của vector phải hợp lý đối với một tế bào vật chủ và nó có sự ổn định lâu dài, đồng thời cần tránh sự thủy phân sản phẩm protein (proteolysis) do các enzyme của tế bào. Hình 2.13 mô tả một loại vector biểu hiện ở prokaryote.
Hình 2.13. Vector biểu hiện pRSET A ở prokaryote (E. coli) được thiết kế dựa trên hệ thống biểu hiện promoter T7. Sự biểu hiện của các gen đích tạo dòng trong vector được cảm ứng bằng cách sản xuất T7 RNA polymerase trong tế bào vật chủ E. coli chủng BL21(DE). PT7-promoter mạnh của bacteriophage T7 cho phép biểu hiện gen ở mức độ cao, RBS-vùng liên kết ribosome, ATG-mã khởi đầu, N-terminal polyhistidine (6×His) tag-cho phép tinh sạch nhanh protein bằng nickel resin và phát hiện bằng kháng thể Anti-HisG, N-terminal XpressTM epitope-cho phép phát hiện protein bằng kháng thể Anti-XpressTM, EK-enterokinase cắt điểm để loại bỏ đầu dung hợp, MCS-vùng tạo dòng, Stop-gen kết thúc phiên mã terminator, f1 ori của phage dạng sợi (filamentous phage)-sản xuất DNA sợi đơn để cho phép phân tích trình tự và phát sinh đột biến dễ dàng, Ampicillin-gen chọn lọc kháng kháng sinh. Nhóm pRSET bao gồm 3 vector A, B và C. Mỗi loại vector có trình tự mã hóa N-terminal tag ở trong một khung đọc khác nhau liên quan với vùng MCS để đơn giản hóa sự tạo dòng trong khung của gen quan tâm.
Nhập môn Công nghệ sinh học 54
2. Xác định mức độ biểu hiện của gen được tạo dòng
Nói chung có ba cách thường được dùng để đánh giá mức độ biểu hiện protein ngoại lai của gen được tạo dòng:
- Điện di polyacrylamide gel để xác định protein có kích thước thích hợp được sản xuất ở mức độ cao trong các tế bào mang vector biểu hiện. Thông thường, protein quan tâm có thể quan sát bằng cách nhuộm gel với Coomassie Brilliant Blue hoặc bằng thuốc nhuộm bạc. Nếu không có băng protein mới được thấy khi dùng các thuốc nhuộm này, thì đánh dấu sự trao đổi chất với 100 µCi của [35S]Met hoặc [35S]Cys trên 1 mL dịch nuôi cấy trong 5 phút. Kỹ thuật SDS-PAGE1và phóng xạ tự ghi có thể cho phép phát hiện protein quan tâm.
- Phân tích Western blot bằng cách dùng các kháng thể đặc hiệu liên kết với protein quan tâm đã được thẩm tích lên màng nitrocellulose sau khi thực hiện kỹ thuật SDS-PAGE.
- Nếu mức độ biểu hiện thấp thì nên đặt gen lacZ cùng hướng với gen được biểu hiện. Như vậy, nếu sự phiên mã hoặc dịch mã hạn chế biểu hiện thì những thay đổi trong hệ thống biểu hiện có thể được kiểm soát bằng những thay đổi trong hoạt tính của β-galactosidase.
▪ Phân tích Western blot
- Kỹ thuật SDS-PAGE
Điện di trên polyacrylamide gel với sự có mặt của SDS cho phép phân ly các phân tử protein có khối lượng khác nhau. SDS có điện tích âm rất lớn và có khả năng liên kết với mạch peptide. Như vậy, số lượng SDS tương tác với protein tỷ lệ với kích thước phân tử protein và điện tích của SDS bám vào có thể làm bất cứ phân tử protein nào cũng chuyển động trong điện trường từ cực âm sang cực dương. Do đó, bằng phương pháp điện di, có thể phân tách riêng biệt các protein có khối lượng phân tử khác nhau (Hình 2.14). Ngoài ra, có thể điện di các protein tùy theo điểm đẳng điện (isoelectric point-IEP) của chúng. Phương pháp này được gọi là điện di tập trung đẳng điện (isoelecric focusing-IEF). Trong dung dịch đệm có pH biến thiên liên tục (gradient pH), các protein sẽ phân ly đến vị trí tương thích với
1SDS-PAGE: Điện di SDS-polyacrylamide gel (sodium dodecyl sulfate polyacrylamide gel electrophoresis).
Nhập môn Công nghệ sinh học 55
điểm đẳng điện của chúng. Hai phương pháp điện di theo khối lượng phân tử và điểm đẳng điện có thể kết hợp với nhau tạo nên kỹ thuật điện di 2 chiều (2-D electrophoresis). Điện di protein trên polyacrylamide gel cho phép phân đoạn, xác định khối lượng phân tử và phân lập protein. Ngoài ra, khối lượng phân tử của protein còn được xác định chính xác bằng phương pháp sắc ký khối phổ.
WM 1 2 3 4 5
Hình 2.14. Hình ảnh điện di SDS-PAGE. WM: chuẩn khối lượng phân tử của protein. Các đường từ 1-5: mẫu protein được điện di.
- Phản ứng liên kết kháng nguyên-kháng thể
Phản ứng liên kết kháng nguyên-kháng thể có tính đặc hiệu rất cao. Vì vậy, có thể áp dụng phản ứng này để phát hiện sự có mặt và tinh sạch protein. Kháng thể (antibody) được sản xuất khi đưa kháng nguyên vào thỏ và được tinh sạch từ máu thỏ sau khi gây nhiễm. Những kháng thể tạo ra bằng cách này là những kháng thể đa dòng (polyclonal antibodies-do các tế bào lympho khác nhau tiết ra), do đó chúng có khả năng nhận biết một số kháng nguyên. Ngược lại, kháng thể đơn dòng (monoclonal antibodies) chỉ tương tác với một kháng nguyên nhất định.
Kháng thể được đánh dấu bằng enzyme (hoặc bằng chất phát huỳnh quang) để phát hiện protein đặc hiệu (thường được thẩm tích lên màng nitrocellulose sau khi chạy điện di SDS, và cố định ở đó) thông qua kỹ thuật Western blot (hoặc immunoblot) (Hình 2.15). Nguyên lý của phản ứng liên
Nhập môn Công nghệ sinh học 56
kết kháng nguyên-kháng thể được trình bày ở hình 2.16. Sau khi protein trên màng nitrocellulose gắn với kháng thể thứ nhất đặc hiệu và tiếp đến là kháng thể thứ hai có đánh dấu enzyme (ví dụ: alkaline phosphatase, horse radish peroxidase…) thì phức hợp này sẽ được liên kết với cơ chất để tạo màu. Sự hiện diện của protein ngoại lai (sản phẩm dịch mã của gen ngoại lai được chuyển vào tế bào vật chủ) sẽ được phát hiện nhờ sự xuất hiện màu của phản ứng liên kết.
Sự phân bố của protein đặc hiệu trong tế bào và tổ chức mô cũng có thể phát hiện bằng kỹ thuật lai in situ (in situ hybridization) với nguyên tắc tương tự Western blot. Ngoài ra, kháng thể cũng được sử dụng để tinh sạch protein đặc hiệu bằng kết tủa miễn dịch hoặc sắc ký ái lực (affinity chromatography). Kháng thể đánh dấu còn được dùng để định lượng kháng nguyên trong kỹ thuật xét nghiệm hấp thụ miễn dịch liên kết enzyme (enzyme-linked immunosorbent assay) gọi tắt là ELISA.
Điện di SDS protein
tổng số và thẩm tích
lên màng nitrocellulose
Bước 1. Ngăn chặn các
phản ứng không đặc
hiệu
Bước 2. Bổ sung kháng
thể 1 đặc hiệu (kháng
thể đơn dòng)
Bước 3. Rửa màng
Hình 2.15. Sơ đồ kỹ thuật Western blot
Bước 4. Bổ sung kháng thể 2 đánh dấu enzyme
Bước 5. Rửa màng
Bước 6. Bổ sung cơ chất bắt màu
Bước 7. Dừng phản ứng bắt màu
Nhập môn Công nghệ sinh học 57
Alkaline phosphatase
Kháng thể thứ hai (thỏ)
Kháng thể thứ nhất (thỏ)
Kháng nguyên
Thẩm tích (blot)
Hình 2.16. Sơ đồ phản ứng liên kết kháng nguyên với kháng thể thứ nhất đặc hiệu và kháng thể thứ hai có đánh dấu enzyme trong Western blot
Tài liệu tham khảo/đọc thêm
1. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA and Struhl K. 2002. Short Protocol in Molecular Biology. Vol 1 and 2. 5th ed. John Wiley & Sons Inc. USA.
2. Glick BR and Pasternak JJ. 2003. Molecular Biotechnology: Principles and Applications of Recombinant DNA. 3rd ed. ASM Press, USA.
3. Maniatis T, Fritsch EF and Sambrook J. 1989. Molecular Cloning-A Laboratory Manual. Cold Spring Habor Laboratory, USA.
4. Ohman DE. 1989. Experiments in Gene Manipulation. Prentice Hall, New Jersey, USA.
5. Primrose SB, Twyman R and Old RW. 2001. Principles of Gene Manipulation. 6th ed. Blackwell Science, Oxford, UK.
6. Rapley R and Walker JM. 1998. Molecular Biomethods Handbook. Humana Press Inc. New Jersey, USA.
7. Walker JM and Rapley R. 2002. Molecular Biology and Biotechnology. 4th ed. The Royal Society of Chemistry, Cambridge, UK.
Nhập môn Công nghệ sinh học 58
Chương 3
Công nghệ lên men vi sinh vật
I. Mở đầu
Các cơ thể vi sinh vật có khả năng sinh trưởng trên nhiều loại cơ chất (môi trường dinh dưỡng) khác nhau và có thể sản xuất nhiều sản phẩm thương mại. Gần đây, việc áp dụng các kỹ thuật di truyền in vitro đã mở rộng phạm vi các sản phẩm được sản xuất bởi vi sinh vật và đã cung cấp các phương pháp mới để tăng sản lượng của những sản phẩm đó. Khai thác thương mại sự đa dạng hóa sinh (biochemical diversity) của các vi sinh vật đã thúc đẩy phát triển công nghiệp lên men, và các kỹ thuật di truyền đã thiết lập một nền công nghiệp ưu thế tạo cơ hội phát triển các quá trình mới và cải thiện những quá trình đang có.
Thuật ngữ lên men (fermentation) trong công nghệ vi sinh có nguồn gốc từ động từ Latin fervere nghĩa là đun sôi, mô tả sự hoạt động của nấm men trên dịch chiết của trái cây hoặc các hạt ngũ cốc được tạo mạch nha (malt) trong sản xuất đồ uống có ethanol. Tuy nhiên, sự lên men được các nhà vi sinh vật học và hóa sinh học giải thích theo các cách khác. Theo các nhà vi sinh vật học thuật ngữ lên men có nghĩa là quá trình sản xuất một sản phẩm bằng nuôi cấy sinh khối vi sinh vật. Tuy nhiên, các nhà hóa sinh học lại cho rằng đó là quá trình sản sinh ra năng lượng trong đó các hợp chất hữu cơ hoạt động với vai trò vừa là chất cho lẫn chất nhận điện tử, đó là quá trình yếm khí mà ở đó năng lượng được sản xuất không cần sự tham gia của oxygen hoặc các chất nhận điện tử vô cơ khác.
Trong chương này thuật ngữ lên men được sử dụng theo nghĩa rộng của nó, ở góc độ vi sinh vật học.
II. Sinh trưởng của vi sinh vật
Sinh trưởng của vi sinh vật có thể tạo ra sự trao đổi chất, nhưng để sản xuất một chất trao đổi như mong muốn thì cơ thể của chúng phải được sinh trưởng dưới những điều kiện nuôi cấy đặc biệt với một tốc độ sinh trưởng đặc trưng.
Nhập môn Công nghệ sinh học 59
Nếu vi sinh vật chỉ được đưa một lần vào môi trường sinh trưởng, thì nuôi cấy ban đầu (innoculated culture) sẽ trải qua một số giai đoạn và hệ thống này được gọi là nuôi cấy mẻ (batch culture). Đầu tiên, sự sinh trưởng không xuất hiện và quá trình này được xem như là pha lag, có thể coi đây là thời kỳ thích nghi. Tiếp theo là khoảng thời gian mà ở đó tốc độ sinh trưởng của tế bào tăng dần, các tế bào sinh trưởng với một tốc độ cực đại và không đổi, thời kỳ này được xem là pha log hoặc pha sinh trưởng theo hàm mũ và được mô tả bằng phương trình:
dx= μ(1)
dt
x
Trong đó: x là nồng độ tế bào (mg/mL), t là thời gian nuôi cấy (giờ), và μ là tốc độ sinh trưởng đặc trưng (giờ). Từ phương trình tích phân (1) ta có:
μ
t
= 0(2)
x x e
t
Trong đó: x0 là nồng độ tế bào ở thời điểm bắt đầu nuôi cấy và xt là nồng độ tế bào sau một khoảng thời gian t (giờ).
Như vậy, đường cong logarithm tự nhiên của nồng độ tế bào theo thời gian t có độ dốc bằng tốc độ sinh trưởng đặc trưng. Tốc độ sinh trưởng đặc trưng trong suốt pha log đạt cực đại ở các điều kiện nuôi cấy thông thường và được mô tả như là tốc độ sinh trưởng cực đại đặc trưng (μmax). Phương trình (1) và (2) bỏ qua trường hợp sự sinh trưởng sẽ làm tiêu hao các chất dinh dưỡng và tăng tích lũy độc tố của sản phẩm. Tuy nhiên, trong thực tế khi chất dinh dưỡng bị hao hụt và các sản phẩm độc được tích lũy, thì tốc độ sinh trưởng của tế bào sẽ không đạt cực đại và cuối cùng làm ngừng quá trình sinh trưởng, lúc này nuôi cấy đi vào pha tĩnh và sau một thời gian sẽ đi vào pha chết, dẫn đến giảm số lượng tế bào sống sót (Hình 3.1).
Như đã trình bày, hiện tượng ngừng sinh trưởng trong nuôi cấy mẻ là do hao hụt thành phần dinh dưỡng hoặc tích lũy sản phẩm độc. Tuy nhiên, có thể khắc phục điều này bằng cách bổ sung một lượng tối thiểu môi trường sạch (mới) vào bình nuôi. Khi môi trường mới được bổ sung liên tục ở một tốc độ thích hợp (hệ nuôi cấy liên tục-continuous culture), thì sinh trưởng của tế bào trong hệ này được điều chỉnh bằng sự sinh trưởng giới hạn và thành phần của môi trường, vì vậy hệ thống này được xem như là một
Nhập môn Công nghệ sinh học 60
chemostat (thể ổn định hóa tính). Hệ thống nuôi cấy liên tục cho phép đạt tới trạng thái ổn định (steady-state) và việc hao hụt sinh khối tế bào qua dòng chảy ra (output) sẽ được bù đắp bởi sự sinh trưởng tế bào trong bình nuôi.
Pha
lag
Nồng độ sinh khối
Pha
log
Pha sinh trưởng nhanh
Pha
tĩnh
Pha sinh trưởng chậm
Thời gian
Pha chết
Hình 3.1. Đường cong sinh trưởng đặc trưng của các cơ thể đơn bào trong nuôi cấy mẻ
Dòng chảy môi trường qua hệ thống điều chỉnh để vào bình nuôi được mô tả bởi thuật ngữ tốc độ pha loãng (dilution rate), ký hiệu là D, bằng tốc độ bổ sung môi trường trên thể tích làm việc của bình nuôi. Sự cân bằng giữa sinh trưởng của tế bào (growth) và sự hao hụt của chúng từ hệ thống này có thể được mô tả như sau:
dx/ dt =growth – output
hoặc:
dx/ dt = μx − Dx
Dưới các điều kiện trạng thái ổn định:
dx/ dt = 0
và vì thế,
μx = Dxvà
μ = D
Nhập môn Công nghệ sinh học 61
Kể từ đây, tốc độ sinh trưởng của vi sinh vật được điều chỉnh bằng tốc độ pha loãng, và đây là một biến thực nghiệm. Điều này lưu ý rằng dưới các điều kiện nuôi cấy mẻ, một cơ thể sẽ sinh trưởng ở tốc độ sinh trưởng cực đại đặc trưng của nó. Vì thế, nuôi cấy liên tục chỉ có thể hoạt động ở các tốc độ pha loãng phía dưới tốc độ sinh trưởng cực đại đặc trưng. Như vậy, trong các giới hạn nhất định, tốc độ pha loãng có thể được dùng để điều chỉnh tốc độ sinh trưởng của nuôi cấy chemostat.
Cơ chế về hiệu quả điều chỉnh tốc độ pha loãng là mối quan hệ giữa µ (tốc độ sinh trưởng đặc trưng) và s (nồng độ cơ chất giới hạn trong chemostat) được chứng minh bởi Monod vào năm 1942:
μ max μ(3)
K ss
=
s +
Trong đó: Ks là hằng số sử dụng hoặc bão hòa, bằng giá trị của nồng độ cơ chất khi µ bằng 1/2 của µmax. Ở trạng thái ổn định, µ =D, vì thế:
D
=
μ max
s
K s
s +
Trong đó: slà nồng độ cơ chất ở trạng thái ổn định trong chemostat, và:
K D
ss−
(4)
=
μ max
D
Phương trình (4) cho thấy nồng độ cơ chất được xác định bằng tốc độ pha loãng. Trong thực tế, điều này xảy ra do sinh trưởng của tế bào đã làm tiêu hao cơ chất tới một nồng độ cần thiết để tốc độ sinh trưởng bằng tốc độ pha loãng. Nếu cơ chất bị hao hụt dưới mức cần thiết thì tốc độ sinh trưởng phụ thuộc tốc độ pha loãng và một loạt các khả năng có thể xảy ra như sau:
- Tốc độ sinh trưởng của tế bào kém hơn tốc độ pha loãng và chúng sẽ bị rửa trôi khỏi bình nuôi ở một tốc độ lớn hơn tốc độ mà chúng đang được sản xuất, kết quả là làm giảm nồng độ sinh khối tế bào.
- Nồng độ cơ chất trong bình nuôi sẽ tăng lên do các tế bào được để lại ít hơn trong bình nuôi để tiêu thụ nó.
- Nồng độ cơ chất được tăng lên trong bình nuôi sẽ cho kết quả các tế bào sinh trưởng ở một tốc độ lớn hơn tốc độ pha loãng và nồng độ sinh khối sẽ tăng.
Nhập môn Công nghệ sinh học 62
- Trạng thái ổn định sẽ được thiết lập trở lại.
Như vậy, chemostat là hệ thống nuôi cấy tự cân bằng được giới hạn chất dinh dưỡng, có thể duy trì trạng thái ổn định trong một phạm vi rộng của các tốc độ sinh trưởng cực đại đặc trưng.
Nuôi cấy mẻ có cung cấp dinh dưỡng (fed-batch culture) được xem là hệ thống trung gian giữa quá trình nuôi cấy mẻ (batch) và nuôi cấy liên tục (continuous). Thuật ngữ nuôi cấy mẻ có cung cấp dinh dưỡng được dùng để mô tả các nuôi cấy mẻ được cung cấp dinh dưỡng liên tục (hoặc nối tiếp nhau) bằng môi trường mới mà không loại bỏ dịch nuôi cấy cũ. Như vậy, thể tích của loại nuôi cấy này tăng lên theo thời gian. Pirt (1975) đã mô tả động học của hệ thống này như sau: Nếu sinh trưởng của một cơ thể bị giới hạn bởi nồng độ của cơ chất trong môi trường thì sinh khối ở pha tĩnh, xmax, sẽ được mô tả bởi phương trình:
xmax=
YS R
Trong đó: Y là yếu tố hiệu suất, bằng khối lượng tế bào được sản xuất trên một gram cơ chất được sử dụng, và SR là nồng độ ban đầu của cơ chất giới hạn sự sinh trưởng. Nếu môi trường mới được bổ sung vào bình nuôi ở tốc độ pha loãng kém hơn μmax thì sau đó hầu như tất cả cơ chất sẽ được sử dụng khi nó đi vào hệ thống:
FS R= μ
X Y
Trong đó: F là tốc độ dòng chảy và X là sinh khối tổng số trong bình nuôi, ví dụ: nồng độ tế bào được nhân lên bởi thể tích nuôi cấy. Cho dù khi sinh khối tổng số (X) trong bình nuôi tăng lên theo thời gian thì nồng độ tế bào (x) hầu như vẫn không đổi; vì vậy dx/ dt = 0và μ = D. Một hệ thống như thế được xem là ở trạng thái gần như ổn định (quasi-steady-state). Khi thời gian và thể tích nuôi cấy tăng lên, thì tốc độ pha loãng lại giảm. Như vậy, giá trị của D được đưa ra như sau: F
D+
=
V Ft 0
Trong đó: F là tốc độ dòng chảy, V0 là thể tích nuôi cấy ban đầu, và t là thời gian. Động học Monod dự báo rằng khi D hạ xuống thì nồng độ cơ chất còn thừa cũng sẽ giảm và kết quả là làm tăng sinh khối. Tuy nhiên, trên phạm vi các tốc độ sinh trưởng hoạt động thì sự tăng sinh khối sẽ không có
Nhập môn Công nghệ sinh học 63
ý nghĩa. Sự khác nhau giữa trạng thái ổn định của chemostat và trạng thái gần như ổn định của fed-batch ở chỗ trong chemostat thì D (kể từ đây là μ) là hằng số còn ở fed-batch thì D (kể từ đây là μ) lại giảm theo thời gian. Tốc độ pha loãng trong fed-batch có thể được giữ không đổi bằng cách tăng (theo hàm mũ) tốc độ dòng chảy nhờ sử dụng một hệ thống điều chỉnh thông qua computer.
III. Sinh khối vi sinh vật và công nghệ lên men
Sự lên men vi sinh vật có thể được phân loại theo các nhóm chính sau: - Sản xuất các tế bào vi sinh vật (sinh khối) như là sản phẩm. - Sản xuất các chất trao đổi của vi sinh vật.
- Sản xuất các enzyme vi sinh vật.
- Sản xuất các sản phẩm tái tổ hợp.
1. Sinh khối vi sinh vật
Công nghệ thu sinh khối vi sinh vật là các quá trình nuôi cấy các chủng thuần khiết hoặc hỗn hợp vài chủng để thu được khối lượng tế bào sau khi sinh trưởng với các mục đích:
- Sinh khối giàu protein dùng làm thực phẩm cho người và thức ăn cho gia súc là những tế bào vi sinh vật (kể cả sinh khối tảo) đã sấy khô và chết, giàu protein, các vitamin nhóm B và chất khoáng. Nguồn sinh khối này được gọi là protein đơn bào.
- Sinh khối nấm men là những tế bào sống để dùng trong công nghiệp bánh mì-men bánh mì, sinh khối vi khuẩn lactic sống có hoạt tính enzyme tiêu hóa để sản xuất các thuốc hỗ trợ tiêu hóa như biolactovin…
- Sinh khối cố định đạm làm phân bón vi sinh, các loại phân bón vi sinh với vi khuẩn sống tự do trong đất và sống cộng sinh với cây họ đậu. - Sinh khối vi khuẩn sinh độc tố đối với các loại sâu thân mềm phá hoại rau màu, để sản xuất thuốc trừ sâu vi sinh.
- Sinh khối vi sinh vật có hệ enzyme phân giải các chất hữu cơ kể cả thuốc trừ sâu và hydrocarbon để sản xuất các chế phẩm vi sinh xử lý nước thải và ô nhiễm trong bảo vệ môi trường.
Nhập môn Công nghệ sinh học 64
2. Quá trình lên men
Hình 3.2 minh họa các phần của một quá trình lên men tổng quát. Phần trung tâm của hệ thống là hệ lên men, trong đó cơ thể được sinh trưởng dưới các điều kiện tối ưu để tạo thành sản phẩm. Trước khi sự lên men bắt đầu, môi trường phải được pha chế và khử trùng, hệ lên men đã vô
trùng, và nuôi cấy khởi đầu phải có một số lượng vi sinh vật vừa đủ ở trong một trạng thái sinh lý phù hợp để cấy truyền vào hệ lên men sản xuất. Kết thúc quá trình lên men các sản phẩm phải được tinh sạch và xử lý thêm.
Phát triển nguyên liệu vi sinh vật
Dịch
nuôi cấy
Sinh khối
Phân tách tế bào
Nuôi cấy
mẫu gốc
Hệ lên men kết hạt
Nuôi cấy trong bình tam giác
Thể nổi vô bào
có lắc
Khử trùng môi trường
Hệ lên men sản xuất
Tách chiết
sản phẩm
Pha chế môi trường
Nguyên liệu chuẩn bị môi trường
Tinh sạch sản phẩm
Đóng gói
sản phẩm
Xử lý chất thải
Hình 3.2. Sơ đồ chung của một quá trình lên men
Các cơ thể vi sinh vật có thể sinh trưởng trong kiểu nuôi cấy mẻ (Hình 3.3), nuôi cấy mẻ có cung cấp dinh dưỡng và nuôi cấy liên tục. Ưu điểm của nuôi cấy liên tục đối với sản xuất sinh khối là quá rõ rệt (có thể xem ở những tính toán sau) nhưng đối với các sản phẩm vi sinh khác thì nhược điểm của nó lại lớn hơn ưu điểm kỹ thuật là có khả năng điều chỉnh để cải thiện quá trình lên men.
Nhập môn Công nghệ sinh học 65
Sensor nhiệt
Motor
Điện cực O2 Điện cực pH
Trục khuấy
4 x vách ngăn
Cánh khuấy
Bộ phận phun khí
Hình 3.3. Cấu hình cơ bản của một hệ lên men mẻ
Hiệu suất của nuôi cấy mẻ có thể được mô tả bởi phương trình: R+−
x x
=(5)
max 0
batch t t
i ii
Trong đó: Rbatch là sản lượng nuôi cấy trong giới hạn nồng độ sinh khối/giờ, xmax là nồng độ tế bào cực đại đạt được ở pha tĩnh, x0 là nồng độ tế bào ban đầu ở lúc gây nhiễm, ti là thời gian cơ thể sinh trưởng ở µmax và tii là thời gian mà cơ thể không sinh trưởng ở µmax bao gồm pha lag, pha giảm tốc độ, và các thời kỳ của từng mẻ, khử trùng và thu hoạch.
Hiệu suất của nuôi cấy liên tục có thể được biểu diễn như sau: ⎜⎝⎛−Tt
Rcont = ⎟⎠⎞
Dxiii 1 (6)
Trong đó: Rcont là sản lượng của nuôi cấy trong giới hạn nồng độ tế bào/giờ, tiii là thời gian trước khi thiết lập trạng thái ổn định bao gồm thời gian chuẩn bị bình nuôi, khử trùng và hoạt động trong nuôi cấy mẻ trước khi hoạt động liên tục. T là thời gian mà các điều kiện trạng thái ổn định chiếm ưu thế, và xlà nồng độ tế bào ở trạng thái ổn định.
Nhập môn Công nghệ sinh học 66
Sản lượng cực đại của sinh khối trên một đơn vị thời gian (ví dụ hiệu suất) trong một chemostat có thể đạt tới bằng cách hoạt động ở tốc độ pha loãng cao nhất của Dx, giá trị này được xem như là Dmax. Hiệu suất lên men mẻ, như đã mô tả trong phương trình (5), là một giá trị trung bình cho thời gian tổng số của sự lên men. Do dx/dt = μx, nên hiệu suất của nuôi cấy tăng lên theo thời gian, và như vậy, phần lớn sinh khối trong quá trình nuôi cấy mẻ được sản xuất ở gần phần kết thúc của pha log. Trong chemostat trạng thái ổn định, hoạt động ở (hoặc gần) Dmax cho hiệu suất duy trì không đổi, và đạt cực đại cho sự lên men toàn phần. Cũng như vậy, một quá trình liên tục có thể được hoạt động một thời gian rất lâu sao cho thời kỳ không sản xuất, tiii trong phương trình (6), có thể không có ý nghĩa. Tuy nhiên, yếu tố thời gian không sản xuất cho nuôi cấy mẻ là rất có ý nghĩa, đặc biệt khi hệ lên men được thiết lập lại nhiều lần trong suốt thời gian vận hành, và vì thế tii sẽ tái diễn nhiều lần.
Bản chất của quá trình liên tục ở trạng thái ổn định cũng có thuận lợi do nó dễ dàng điều chỉnh hơn hệ lên men mẻ. Trong suốt thời gian lên men mẻ, sản lượng nhiệt, sự sản xuất kiềm hoặc acid, và sự tiêu thụ oxygen sẽ biến thiên từ các tốc độ rất thấp ở lúc bắt đầu tới các tốc độ rất cao trong suốt pha log muộn. Vì vậy, điều chỉnh môi trường của một hệ thống như thế khó hơn nhiều so với quá trình liên tục mà ở trạng thái ổn định các tốc độ sản xuất và tiêu thụ là hằng số.
Nhược điểm thường xuyên của hệ thống nuôi cấy liên tục là sự mẫn cảm của chúng với sự nhiễm bẩn bởi các cơ thể bên ngoài. Ngăn cản sự nhiễm bẩn là vấn đề hàng đầu khi thiết kế hệ lên men, xây dựng và vận hành, và phải được khắc phục bởi một công nghệ tốt.
Sản xuất các sản phẩm phụ được kết hợp với sự sinh trưởng (ví dụ như ethanol) sẽ hiệu quả hơn trong nuôi cấy liên tục. Nhưng việc ứng dụng nuôi cấy liên tục để sản xuất các sản phẩm sinh tổng hợp của vi sinh vật (ngược với sự dị hóa) đã gặp nhiều hạn chế. Mặc dù, về lý thuyết có khả năng tối ưu một hệ thống liên tục để có thể tăng hiệu suất của sự trao đổi chất, tuy nhiên khả năng ổn định trong một thời gian dài của các hệ thống như thế là rất khó khăn do sự thoái hóa của chủng vi sinh vật. Khảo sát về động học của nuôi cấy liên tục cho thấy rằng hệ thống này là sự chọn lọc cao và thích hợp cho việc nhân giống những cơ thể thích nghi tốt nhất trong
Nhập môn Công nghệ sinh học 67
nuôi cấy. Sự thích nghi tốt nhất trong phạm vi này được xem là ái lực của cơ thể đối với cơ chất được giới hạn ở tốc độ pha loãng đang hoạt động. Mặc dù công nghiệp lên men đã miễn cưỡng chấp nhận nuôi cấy liên tục để sản xuất các chất trao đổi của vi sinh vật, nhưng những tiến bộ rất đáng kể lại thu được trong sự phát triển các hệ thống nuôi cấy mẻ có cung cấp dinh dưỡng. Nuôi cấy mẻ có cung cấp dinh dưỡng có thể được sử dụng để đạt tới một mức độ rất đáng kể của sự điều chỉnh quá trình và mở rộng thời gian sản xuất của quá trình nuôi cấy mẻ truyền thống mà không có các nhược điểm cố hữu của nuôi cấy liên tục đã được mô tả ở trên. Ưu điểm chính của cung cấp thành phần môi trường vào nuôi cấy là chất dinh dưỡng có thể được duy trì ở nồng độ rất thấp trong suốt quá trình lên men. Nồng độ chất dinh dưỡng thấp có thể thuận lợi trong một số mặt sau: - Duy trì các điều kiện nuôi cấy trong phạm vi khả năng thông khí của hệ lên men.
- Loại bỏ các ảnh hưởng khắc nghiệt của các thành phần môi trường, ví dụ như sử dụng nhanh các nguồn nitrogen, carbon và phosphate. - Tránh các hiệu quả độc của thành phần môi trường.
- Cung cấp một mức độ giới hạn chất dinh dưỡng cần thiết cho các chủng dị dưỡng.
IV. Các sản phẩm lên men vi sinh vật
1. Lên men rượu
Rượu đã được con người sản xuất và sử dụng rất lâu, vào khoảng 6.000 năm trước công nguyên. Do nhu cầu và lợi ích của sản phẩm này nên đến nay việc nghiên cứu và mở rộng sản xuất chúng ngày càng được quan tâm. Có rất nhiều loại rượu và mỗi loại đều có thành phần và quy trình sản xuất khác nhau, có thể tạm chia thành ba loại chủ yếu sau: Rượu trắng (ethanol), rượu vang (wine) và rượu mùi (liquor).
1.1. Rượu trắng
Rượu trắng được sản xuất bằng hai phương pháp chính: phương pháp lên men vi sinh vật và phương pháp hóa học. Tuy nhiên, phương pháp lên men vi sinh vật là phương pháp chủ yếu. Đây là quá trình lên men rượu của nấm men và một số vi sinh vật khác, trong đó nấm men là đối tượng chính
Nhập môn Công nghệ sinh học 68
được sử dụng để sản xuất rượu ở quy mô công nghiệp (Hình 3.4). Lên men rượu là một quá trình phức tạp chuyển đường thành rượu, có sự tham gia của nấm men trong điều kiện yếm khí. Phương trình tổng quát của lên men rượu như sau:
C6H12O6 → 2C2H5OH + 2CO2 + 27 kcal
Quy trình sản xuất rượu trắng bằng phương pháp lên men rượu bởi nấm men được thực hiện qua các bước sau: Chế biến nguyên liệu thành dịch đường, lên men biến đường thành rượu, chưng cất và tinh chế ethanol. Trong đó, lên men biến đường thành rượu là giai đoạn quan trọng nhất trong sản xuất rượu, quyết định chất lượng sản phẩm tạo thành. Sau khi dịch đường hóa đã được xử lý, người ta bổ sung thêm một số thành phần để cung cấp thêm vitamin và amino acid như muối ammonium, muối phosphate, dịch thủy phân nấm men. Môi trường có thành phần như trên có thể sử dụng để lên men. Giống được sử dụng chủ yếu trong lên men rượu là các chủng nấm men Saccharomyces cerevisiae có tốc độ phát triển mạnh và hoạt lực lên men cao, lên men được nhiều loại đường khác nhau và có tốc độ lên men nhanh, có khả năng chịu được độ ethanol cao từ 10-12%.
Hình 3.4. Nhà máy sản xuất ethanol quy mô nhỏ
Nhập môn Công nghệ sinh học 69
Môi trường lên men sau khi được khử trùng cần có độ đường đạt 90- 120 g/L và pH trong khoảng 4,5-4,8. Thời gian lên men từ 65-72 giờ, trong đó 10 giờ đầu có sục khí để nấm men sinh sôi nảy nở, sau đó cho lên men tĩnh (yếm khí). Quá trình lên men rượu qua các bước sau: đường và các chất dinh dưỡng của môi trường lên men được hấp thụ vào trong tế bào nấm men qua màng tế bào và tham gia vào quá trình trao đổi chất, rượu ethanol và CO2 tạo thành liền thoát ra khỏi tế bào, rượu ethanol tan tốt trong nước do vậy nó khuếch tán rất nhanh vào môi trường chung quanh. Kết thúc lên men rượu, sau khi đã loại bỏ tế bào nấm men, muốn được rượu tinh khiết cần chưng cất dịch lên men để loại bỏ tạp chất. Kỹ thuật chưng cất rượu ảnh hưởng rất lớn đến chất lượng rượu thu được.
1.2. Rượu vang
,
- . c (Hình 3.5).
Hình 3.5. Một dây chuyền sản xuất rượu vang
Nhập môn Công nghệ sinh học 70
2 để ngăn cản
các phản ứng
.
Sac.
ellipsoideus, Sac. cerevisiae, Sac. oviformis…
bao gồm ba g
, b
.
, gạn
. Quá trình
gạn lọc và lên men phụ có thể lặp lại nhiều lần để có dung dịch trong suốt. Ở
. ,
, do đó cần hạ thổ rượu ở nơi mát một thời gian lâu để
rượu được “chín” và có chất lượng hoàn hảo.
2. Sản xuất enzyme
Ứng dụng thương mại chính của các enzyme vi sinh vật là trong công nghiệp thực phẩm và sản xuất bia mặc dù enzyme đã được thừa nhận trong các ứng dụng phân tích và chẩn đoán bệnh, cũng như trong sản xuất bột giặt. Hầu hết các loại enzyme được tổng hợp trong pha log của nuôi cấy mẻ và có thể, vì thế, được xem như các chất trao đổi sơ cấp. Tuy nhiên, trong một số trường hợp amylase (Bacillus stearothermophillus) được sản xuất bởi nuôi cấy idiophase vì thế có thể xem là tương đương với các chất trao đổi thứ cấp. Các enzyme có thể được sản xuất từ động-thực vật cũng như các nguồn vi sinh vật, nhưng sản xuất bằng lên men vi sinh vật là phương pháp kinh tế và thích hợp nhất. Hơn nữa, hiện nay nhờ công nghệ DNA tái tổ hợp người ta có thể chuyển gen vào các tế bào vi sinh vật để sản xuất các enzyme của động-thực vật (Hình 3.6).
Nhập môn Công nghệ sinh học 71
Các tiến bộ của công nghệ DNA tái tổ hợp đã mở rộng phạm vi các sản phẩm lên men tiềm tàng của vi sinh vật. Có khả năng đưa các gen từ các cơ thể bậc cao vào các tế bào vi sinh vật như là các tế bào nhận để tổng hợp các protein (bao gồm enzyme) ngoại lai. Các tế bào vật chủ dùng trong những trường hợp này là E. coli, Sac. cerevisiae và một số loại nấm men khác.
2.1. Các loại enzyme vi sinh vật
Trong quá trình sinh trưởng, các enzyme được hình thành trong tế bào và một số được tiết ra môi trường xung quanh. Trong sản xuất chủ yếu là sản phẩm của enzyme ngoại bào, còn nếu muốn tách enzyme nội bào thì phải phá vỡ tế bào. Các vi sinh vật được dùng trong sản xuất enzyme gồm có vi khuẩn, nấm mốc, nấm men và xạ khuẩn.
Các chế phẩm enzyme được sản xuất từ vi sinh vật đã được ứng dụng trong nhiều ngành công nghiệp khác nhau, chủ yếu là các enzyme thủy phân: amylase, protease, pectinase, cellulase…
Hình 3.6. Sản xuất enzyme ở quy mô công nghiệp
2.1.1. Amylase nấm mốc
Nhiều chủng nấm mốc có khả năng sản xuất enzyme amylase. Amylase nấm mốc có các loại sau:
- α-amylase có tác dụng thủy phân tinh bột thành maltose, glucose và các dextrin có phân tử lượng khác nhau.
Nhập môn Công nghệ sinh học 72
- Glucoamylase có tác dụng thủy phân tinh bột, glycogen và polysaccharide. Enzyme này được dùng trong sản xuất rượu, chuyển những dextrin có phân tử lượng cao không lên men thành những hợp chất lên men được và do đó nâng cao được hiệu suất nấu rượu từ các nguyên liệu là tinh bột.
- α-glucosidase thủy phân maltose thành glucose.
- Dextrinase thủy phân isomaltose, panose và dextrin thành những loại đường có thể lên men được.
2.1.2. Amylase vi khuẩn
Một số vi khuẩn có khả năng sinh ra nhiều enzyme α-amylase. Amylase vi khuẩn chỉ có khả năng phân hủy tinh bột mạnh và tạo thành những α-dextrin phân tử lượng cao bắt màu với iodine. Enzyme α-amylase vi khuẩn được dùng trong sản xuất đường mật ngô và chocolate, trong sản xuất bia, chế biến dextrin với dịch đường để sản xuất thức ăn cho người già và trẻ em, trong sản xuất nước quả và trong y học.
Dextrinase nấm mốc và amylase vi khuẩn còn được sử dụng rộng rãi trong công nghiệp dệt và giấy.
2.1.3. Protease
Protease là nhóm enzyme thủy phân các liên kết peptide trong phân tử protein hoặc các polypeptide.
- Protease thủy phân protein thành các peptide có phân tử lượng nhỏ (peptone và polypeptide). Tiếp theo đó là sự phân hủy các peptide trên thành các amino acid tự do dưới tác dụng của peptidase.
- Protease được dùng để nâng cao giá trị dinh dưỡng của thịt cá, thủy phân protein của sữa để chế biến những món ăn kiêng đặc biệt, được dùng trong thuộc da, sản xuất bột giặt, phim ảnh, tơ sợi, len dạ và trong y học. Protease vi sinh vật có thể sử dụng cùng với amylase trong chế biến thức ăn gia súc.
2.1.4. Pectinase
Là nhóm enzyme thủy phân pectin tạo thành galacturonic acid, glucose, galactose, arabinose, methanol… Pectinase có nhiều loại, nhưng có
Nhập môn Công nghệ sinh học 73
hai loại được nghiên cứu nhiều hơn cả là pectinesterase và polygalacturonase.
- Pectinesterase có tác dụng thủy phân các liên kết ester trong phân tử pectin, tách nhóm metocyl tạo thành methanol và polygalacturonic acid. - Polygalacturonase thủy phân pectinic acid và các polygalacturonic khác, tách các gốc D-galacturonic acid tự do.
2.1.5. Cytolase
Vi sinh vật (đặc biệt là nấm mốc) sản sinh ra hệ enzyme có hoạt tính cao có thể phân hủy hemicellulose, pentozan, lignin… Các enzyme này được gọi chung là cytolase (bao gồm cellulase, hemicelllulase, pentosinase).
Cellulase tác dụng phân hủy cellulose thành cellobiose, rồi sau đó tiếp tục thủy phân tới glucose. Việc phân lập các chủng vi sinh vật sản xuất cellulase có hoạt tính cao và tách enzyme này ra dưới dạng tinh khiết vẫn còn gặp nhiều khó khăn. Vì vậy, hiện nay chưa sản xuất được enzyme này ở quy mô công nghiệp, song việc sử dụng nó trong các ngành kinh tế và công nghiệp có nhiều tiềm năng. Ví dụ cytolase có thể dùng trong công nghiệp bia để phân hủy các vỏ hạt không phải vỏ mạch, trong sản xuất nước quả, trong chế biến bánh mì, trong các quá trình gia công thực phẩm để nâng cao giá trị dinh dưỡng, cũng như trong sản xuất thức ăn gia súc.
2.1.6. Invertase
Invertase của nấm mốc và nấm men đều thủy phân saccharose, nhưng cơ chế tác dụng của chúng hoàn toàn khác nhau. Invertase của nấm mốc là glucosidase, tác dụng lên đầu glucose của saccharose. Còn invertase của nấm men là fructosidase, tác dụng lên đầu fructose của saccharose.
Invertase là enzyme nội bào và chỉ thoát ra môi trường khi tế bào bị phân hủy. Enzyme này được dùng rộng rãi trong sản xuất bánh kẹo, rượu mùi, kem, mật ong nhân tạo. Nó làm tăng vị ngọt khi thủy phân đường saccharose thành fructose và glucose, làm tăng độ hòa tan của saccharose trong sản phẩm.
2.1.7. Enzyme oxy hóa glucosooxydase-catalase
Glucosooxydase là enzyme oxy hóa khử, chỉ tác dụng lên β-D-glucose khi có mặt oxygen, nó oxy hóa glucose thành gluconic acid và H2O2. Dưới
Nhập môn Công nghệ sinh học 74
tác dụng của catalase (một enzyme hay đi cùng với glucosooxydase) H2O2 sẽ bị khử thành H2O và O2.
Glucosooxydase-catalase có thể loại bỏ oxygen không khí khỏi môi trường. Vì vậy, chúng được dùng để bảo vệ những nguyên liệu, vật liệu khác nhau để tránh oxy hóa bởi không khí. Sử dụng những enzyme này cho phép kéo dài thời gian bảo quản thực phẩm (các dịch cô đặc, chất béo, bia, rượu vang, nước uống, sữa…). Đồng thời chúng cũng được sử dụng rộng rãi trong y học từ năm 1950 để chữa bệnh.
2.2. Sinh tổng hợp enzyme cảm ứng
yme
và .
Asper. oryzae
phương p
-
α-amylase.
Asper. awamori trên
-
.
-
óa .
:
Nhập môn Công nghệ sinh học 75
.
.
Muốn tổng hợp được enzyme cảm ứng cần phải có bốn điều kiện: - Có gen tương ứng trong thể nhiễm sắc của tế bào.
- Có đầy đủ các nguyên liệu để xây dựng các phân tử enzyme đó (các amino acid và các hợp chất coenzyme nếu enzyme đó gồm hai cấu tử). - Năng lượng cần thiết dùng cho việc tổng hợp enzyme.
- Chất cảm ứng, nếu không có chất cảm ứng thì dù có đủ ba điều kiện trên cũng không thể tổng hợp được enzyme.
Như vậy, có thể coi việc có chất cảm ứng là điều kiện rất cần thiết để thu được những enzyme mong muốn. Trong công nghiệp sản xuất enzyme cần phải lựa chọn những chất cảm ứng thích hợp và xác định nồng độ tối ưu của nó trong môi trường để có hiệu suất sinh tổng hợp cao nhất.
2.3. Những phương pháp nuôi cấy vi sinh vật để sản xuất enzyme Công nghệ sản xuất enzyme hiện nay trên thế giới ứng dụng hai phương pháp: nuôi cấy bề mặt và nuôi cấy chìm.
Trong nuôi cấy bề mặt, vi sinh vật mọc trên bề mặt môi trường rắn (Hình 3.7) hoặc lỏng. Các môi trường rắn trước khi nuôi cấy vi sinh vật cần được làm ẩm. Vi sinh vật phát triển sẽ lấy những chất dinh dưỡng trong môi trường và sử dụng oxygen phân tử của không khí để hô hấp. Để đảm bảo cho vi sinh vật mọc đều trên bề mặt môi trường và sử dụng được nhiều chất dinh dưỡng sinh ra enzyme, những lớp môi trường rắn cần phải mỏng (chỉ dày khoảng 2-5 cm). Điều này dẫn đến một nhược điểm cơ bản của phương pháp này cần phải có mặt bằng sản xuất lớn và chi phí lao động chân tay nhiều.
Trong nuôi cấy chìm, vi sinh vật hiếu khí chỉ sử dụng được oxygen hòa tan trong môi trường, vì vậy trong quá trình nuôi cấy phải sục khí và khuấy liên tục. Phương pháp nuôi cấy chìm hiện đại hơn, dễ cơ khí hóa và tự động hóa, việc tổ chức quy mô lớn tương đối dễ dàng và đơn giản. Với phương pháp này có thể dùng các chủng vi sinh vật đột biến có khả năng sinh tổng hợp enzyme cao và lựa chọn các thành phần môi trường thích hợp, các điều kiện nuôi cấy tối ưu.
Nhập môn Công nghệ sinh học 76
Phương pháp nuôi cấy bề mặt trên môi trường rắn cũng có một số ưu điểm so với phương pháp nuôi cấy chìm, đó là: nồng độ enzyme tạo thành ở môi trường rắn cao hơn nhiều lần, không cần các thiết bị phức tạp, chủ yếu nuôi trên khay và buồng nuôi giữ ở nhiệt độ và độ ẩm thích hợp, quá trình sản xuất tiêu tốn ít năng lượng. Trong phương pháp nuôi cấy bề mặt vi sinh vật được nuôi cấy trong điều kiện không vô trùng tuyệt đối. Nếu có vi sinh vật tạp nhiễm thì chỉ cần loại bỏ phần đó. Còn trong nuôi cấy chìm cần phải giữ vô trùng tuyệt đối trong tất cả quá trình, nếu bị nhiễm thì hư hỏng toàn bộ và có thể phải bỏ đi hoàn toàn. Khi nuôi cấy chìm không những chỉ cần vô trùng ở quá trình nhân giống, lên men, mà còn phải đảm bảo vô trùng đối với không khí thổi vào môi trường.
A BHình 3.7. Lên men trên môi trường rắn. A: lên men kỵ khí trong nồi bằng đất nung, B: lên men hiếu khí.
2.3.1. Phương pháp nuôi cấy bề mặt
Nuôi cấy nấm mốc và một số vi khuẩn theo phương pháp bề mặt để sản xuất enzyme thường dùng môi trường rắn, một số trường hợp có thể dùng môi trường lỏng.
Môi trường rắn thường là các nguyên liệu tự nhiên như cám, đôi khi dùng gạo tấm, ngô, bã bia, bã củ cải đường, khoai tây, lõi ngô… hoặc hỗn hợp những nguyên liệu này. Môi trường lỏng thường là rỉ đường, dịch thủy phân từ thóc mầm, nước bã rượu… có pha thêm muối khoáng.
Để đảm bảo đủ các chất dinh dưỡng trong môi trường người ta có thể bổ sung các nguồn N, P, K hoặc các chất sinh trưởng (nước khoai tây, cao
Nhập môn Công nghệ sinh học 77
ngô…). Độ ẩm 58-60% tương đối thích hợp với nhiều chủng nấm mốc nuôi cấy bề mặt trên khay hở. Tuy nhiên, độ ẩm 60% vi khuẩn dễ phát triển, dễ gây tạp nhiễm, khó thông khí. Trường hợp độ ẩm từ 45-50%, khi nuôi cấy môi trường sẽ khô nhanh, sinh bào tử yếu và làm giảm hoạt tính của enzyme tạo thành. Trong thời gian nuôi cấy, nên giữ độ ẩm của môi trường ở 50- 60%, muốn vậy độ ẩm không khí phòng nuôi cấy phải khoảng 90-100%.
Tuy rằng, nuôi cấy bề mặt không cần điều kiện vô trùng tuyệt đối nhưng môi trường (đặc biệt trong quá trình nhân giống) cũng cần được vô trùng để cho giống phát triển bình thường nhất là giai đoạn đầu. Trong sản xuất cần phải vô trùng môi trường rắn ở 1-1,5 atm bằng hơi nóng trong 45-
60 phút. Nếu môi trường trước khi vô trùng được trộn với chlohydric acid hoặc sulfuric acid đến pH thích hợp, hay thêm một ít formalin hoặc một số chất sát trùng khác thì chỉ cần vô trùng dưới ở 0,2-0,3 atm. Thêm acid và giữ môi trường ở pH nhất định sẽ giúp cho một vài enzyme tạo thành được nhiều hơn.
Môi trường được dàn mỏng ra các khay đã vô trùng dày khoảng 2- 2,5 cm, để nguội tới 30oC thì tiến hành cấy giống. Giống được nhân cũng theo phương pháp bề mặt hoặc bằng bào tử thu được theo phương pháp tách bào tử khỏi môi trường nhân giống và chứa vào các bình nút kín hoặc trong các túi polyethylene. Trong nuôi cấy nhân giống thường để mốc phát triển đến già sinh ra nhiều bào tử. Tỷ lệ nhân giống khoảng 0,2-2%. Mỗi gram bào tử mốc có thể cấy vào 10 kg môi trường. Các khay có môi trường đã cấy mốc được đặt vào phòng nuôi có sẵn các giá. Phòng nuôi có thể điều chỉnh được nhiệt độ, độ ẩm và được thông gió. Nhiệt độ thích hợp với đa số mốc là 30-32oC, nếu nhiệt độ xuống dưới 24oC nấm phát triển chậm, sinh bào tử yếu, thời gian nuôi cấy dài dẫn đến giảm khả năng sinh tổng hợp enzyme. Thời gian nuôi cấy nấm mốc khoảng 36-60 giờ.
Quá trình nuôi cấy nấm mốc trên bề mặt môi trường bao gồm ba thời kỳ:
- Khoảng 10-14 giờ đầu. Bào tử bắt đầu nảy mầm, thời kỳ này chưa hình thành enzyme không đòi hỏi phải thông khí nhiều, chỉ cần làm thoáng khoảng 2-3 thể tích không khí/thể tích phòng/giờ. Giống rất nhạy cảm với nhiệt độ ở những giờ này, nhiệt độ buồng nuôi cần giữ 29-31oC .
- Thời kỳ giữa khoảng 14-18 giờ. Mốc phát triển nhanh, hô hấp mạnh. Sợi nấm có thể quan sát thấy bằng mắt thường, lúc đầu lớp lông có
Nhập môn Công nghệ sinh học 78
màu trắng xám và ngày càng rõ, làm môi trường kết bánh lại. Có thể phải lật môi trường, bẻ nhỏ ra để sợi nấm mọc tốt hơn. Các chất dinh dưỡng trong môi trường tiêu hao nhanh để phục vụ cho quá trình trao đổi chất trong tế bào và giống hô hấp mạnh tỏa ra môi trường chung quanh 80-90 kcal/giờ, làm nhiệt độ môi trường có thể tăng lên đến 37-40oC hoặc hơn. Thời kỳ này cần phải thông khí mạnh, tới 60 thể tích khí/thể tích phòng/giờ để cung cấp O2 cho mốc và đuổi CO2 ra khỏi môi trường, đồng thời làm giảm nhiệt độ buồng nuôi. Nhiệt độ buồng nuôi ở giai đoạn này cần giữ ở 28-29oC và độ ẩm trong phòng khoảng 100%.
- Thời kỳ cuối khoảng 10-20 giờ. Các quá trình trao đổi chất vẫn tiếp tục nhưng yếu dần, nhiệt độ môi trường giảm xuống và việc tạo thành enzyme của tế bào vẫn tiếp tục. Nhiệt lượng tỏa ra khoảng 15-30 kcal/kg/giờ. Thông khí không quá 20-25 thể tích không khí/thể tích phòng/giờ, giữ nhiệt độ buồng nuôi ở 30oC.
Tùy thuộc vào đặc tính sinh lý của từng loại mốc, thời gian nuôi cấy có thể kết thúc tại điểm mà lượng enzyme tạo thành tối đa.
2.3.2. Phương pháp nuôi cấy chìm
Nuôi cấy vi sinh vật sinh enzyme theo phương pháp chìm được thực hiện trong các bình lên men có cánh khuấy và sục khí liên tục (Hình 3.8 và 3.9). Quá trình tương tự như trong sản xuất amino acid, kháng sinh…
Không thể có môi trường nuôi cấy chung cho tất cả các chủng vi sinh vật, vì vậy cần phải chọn thành phần môi trường, tỷ lệ các chất dinh dưỡng sao cho thích hợp với từng chủng, đặc biệt phải chú ý tới chất cảm ứng cần thiết để cho vi sinh vật sản sinh ra enzyme ở mức tối đa. Trong nhiều môi trường nuôi cấy chìm,
Aspergillus,
.
Nhập môn Công nghệ sinh học 79
Hình 3.8. Lên men bằng phương pháp nuôi cấy chìm trong môi trường lỏng ở quy mô phòng thí nghiệm (5 L)
Thành phần khoáng trong môi trường cũng rất có ý nghĩa. Trong môi trường nuôi cấy một số chủng Asper. oryzae ngoài tinh bột và nitrate còn cần thêm MnSO4. Nếu thiếu MnSO4 mốc vẫn phát triển bình thường, nhưng amylase không được tạo thành (trong phân tử amylase có chứa những amino acid mang S và Mn). Môi trường được vô trùng trong thiết bị riêng hoặc trong bình lên men ở 121-125oC/45-60 phút. Môi trường trước khi vô trùng cần được dịch hóa sơ bộ để tránh tình trạng tinh bột hồ hóa làm môi trường đặc sệt hoặc có độ dính cao.
Sau khi làm nguội môi trường đến nhiệt độ thích hợp sẽ tiến hành tiếp giống. Giống được cấy từ ống nghiệm qua các bình tam giác, đặt trên máy lắc, rồi nuôi ở bình nhân giống có thể tích bằng 5-10% thể tích bình lên men từ 24-36 giờ. Như vậy, n
. Cấy giống mốc bào
tử theo phương pháp chìm sẽ kéo dài thời gian nảy mầm và cũng kéo dài toàn bộ quá trình nuôi cấy. Môi trường nhân giống có thể dùng các hợp chất nitrogen dễ tiêu đối với vi sinh vật mà trong quá trình nuôi cấy vẫn nâng cao được hoạt tính sinh tổng hợp. Tỷ lệ tiếp giống nằm trong khoảng 2-5%, nhưng ở một số chủng tỷ lệ này thấp hơn nhiều (0,5-0,6%).
Nhập môn Công nghệ sinh học 80
Sinh tổng hợp enzyme theo phương pháp nuôi cấy chìm thường khoảng từ 2-4 ngày. Đa số các enzyme thủy phân do nấm mốc, xạ khuẩn tạo thành được tiết ra môi trường xung quanh, phần còn lại trong hệ sợi sau ba ngày nuôi cấy khoảng 10-15%. Độ pH môi trường có một ý nghĩa rất lớn, độ pH thích hợp cho sinh tổng hợp α-amylase là 7-8, glucoamylase là 4,5-5. Khi dùng các muối ammonium làm nguồn nitrogen, quá trình phát triển vi sinh vật sẽ acid hóa môi trường còn khi dùng nitrate làm nguồn nitrogen môi trường sẽ bị kiềm hóa.
Hình 3.9. Lên men bằng phương pháp nuôi cấy chìm trong môi trường lỏng ở quy mô pilot (200 L)
Sự sục khí không những ảnh hưởng đến sinh trưởng của vi sinh vật mà còn ảnh hưởng đến sự tạo thành enzyme. Tốc độ sử dụng oxygen cao nhất của nấm mốc sau khoảng 24 giờ nuôi cấy rồi giảm dần. Tăng nồng độ tất cả các chất dinh dưỡng và oxygen hòa tan trong môi trường có thể nâng cao được khả năng sinh tổng hợp α-amylase.
Nhập môn Công nghệ sinh học 81