dang
i U L U L U L
l L = - ^ = ^ r = — r (2.4.18)
/JL J^L J00^
hoac U L = ZLi L = ( j X L) i L -(jc o L )iL (2.4.19) 43
Cac he thuc (2.4.18) va (2.4.19) duoc goi la cac bieu thuc cua dinli I not Ohm dudi dang phuc cho dien cam.
Tir (2.4.9) ta thay rang dong dien hinh sin trong dien cam cham ve pha so vdi dien ap tren no mot goc la ^ , hay noi cach khac, dien ap hinh sin tren dien
cam vuot trudc \ i pha so vdi dong dien trong no mot goc la ^ . Dieu nay duoc
.71
the hien bdi thira sd j = e 2 trong bieu thurc cua tOng trd phirc cua dien cam: Z L = jcoL = jX L = coLZ^ = X LZ j (2.4.20)
D6 thi vecto cho U L va i L duoc ve d H.2.4.2.
Bieu thurc ciia tri sd tuc thdi ciia dong dien iL(t) UL = U la : J
sin cot + y uL 2
coLsin U r
cot + - —
Hinh 2.4.2
coLsin
« t + H/UL- |
(2.4.21)
Cac duong cong cua uL(t) va iL(t) cho trudng hop vj/u = \\i = 0 duoc ve d H.2.4.3.
44
2.4.2. Cong suat ttfc thdi pL(t) va cong suat phan khang QL Vdi cac chi6u duong ciia uL(t) va iL(t) chon giong nhau nhu 6 H.2.4.1 thi cdng suat tire thdi pL(t) trong di£n cam bang
P l (0 = u l (0 *l (0
= U Lm s i n ( Wt + V„L ) * JLm s in ( fflt + V iL )
= X Ll [ msinj^cot + v(/iL + ^ s in ( c o t + v)/iL)
= X LILmc o s ( wt + ViL )sin(cot + v|/iL )
hay
P l ( 0 = ( x l j l ) sin2(wt + ViL ) = Q l sin2 (cot + vjy ) (2.4.22)
Ta nhan thay rang cong suat tire thdi Pl(0 dao dong hinh sin vdi tan sd goc 2co (ga'p doi tan sd goc cua nguon dien ap), vdi bien do bang :
QL = X LI* (2.4.23)
Ngudi ta dinh nghla cong suat tac dung PL la tri sd trung binh cua cdng suat turc thdi pL(t) trong mot chu ky cua dong dien:
p L 4 . f P L ( t ) d l ( 2 A 2 4 )
Thay (2.4.22) vao (2.4.24) ta d6 thay rang
1 T
PL = Y | , X LI2 sin2(cot + ¥ iL )d t = 0 (2.4.25)
Ve mat vat ly dieu nay co nghla la d dien cam khong co su tieu hao nang luong ma chi co sir trao doi nang luong giua nguon va tir trudng. Trong m6i chu ky luong nang luong do nguon dua vao tir trudng cua dien cam cung bang luong nang luong ma tir trudng tra lai nguon. Dieu nay th£ hien d su bang nhau cua cac phan dien tich duong (gidi han giua dudng cong pL(t) va true thdi gian) va cac phan dien tich am (gidi han giua dudng cong pL(t) va true thdi gian) trong mot chu ky T d tren H. 2.4.3
45
De dac trirng cho cuong do cua su trao d6 i nang luong giura nguon va tu trudng cua dien cam nguoi ta dung bien do ciia cong suat tuc thoi p ^ t) tuc:
Ql = Xl I2 (2.4.26)
goi la cong suat phan khang (reactive power) cua dien cam. Cong suat phan khang QL co don vj la volt - ampere phan khang (volt - ampere reactif) viet tat la VAr.
Vf du 2.4.1 :
Mot dien cam L = 200 mH duoc noi vao ngu6n dien ap hinh sin u(t) = 220^2 sin wt V vdi f = 50 Hz. Hay tim ZL, i L, i^ t), P l(0 va QL.
G ia i:
Tong trd phuc cua dien cam bang
Z L = jcoL = j(2nfL) = j(2 n x 50 x 0,2) = j62.832 Q
Dong dien hieu dung phuc trong dien cam bang
o
• _ U 220Z0
L " Z L " j62,832= — j3,5014 A = 3 .5 0 1 4 Z - — A
Dong dien hieu dung IL = 3,5014 A.
Bieu thuc cua dong dien tuc thdi trong dien cam la
iL (t) = 3,5014^2 sin
Cong suat tuc thdi
P L ( 0 = ul ( 0 x * l( 0
220V2 sin ( 100m) 3,5014%/2 sin 1 0 0 n - ^
= (770.3l)sin2 100 m - j
v
Cong suat phan khang cua dien cam
q l = X l I l = (62.832)(3.5014)2 =770.31 VAr
46
2.5. MACH DIEN CHI CO DIEN DUNG C
2.5.1. Dong dien va dien ap. Djnh luat Ohm dudi dang phurc Ta xet mach dien don gian chi gom co mot ic (i) ; ' , ' 0-----------^ phan tir co dien dung C noi vao mot nguon
dien ap hinh sin (H.2.5.1)
Ta co: u(»
u c (t)
uc ( t ) = u (t) = U msin(wt + Vu) (2.5.1) 0-
duc (t)
va ic (t) - C dt(2.5.2) Hinh 2.5.1
Vdi nguon dien ap hinh sin thi d che do xac lap dong dien trong mach cung la mot dong dien hinh sin co cung tan so.
Dat U c ( t ) = U C m s i n ( « t + V u c )
ic ( t ) = I C m s i n ( ® t + ^ic )
va thay vao (2.5.2) va (2.5.1) ta duoc
i c ( t ) = c ^ [ u aV,sin(wt + M v )
= c ^ [ U msin( wt + V u )]
hay
ICm sin(cot + My ) = (odC)UCmcos(cot + v iy ) =
(2.5.3) (2.5.4)
= (coC)UCmsin[ o)t + \j/Uc + y ) (2.5.5)
Tir (2.5.5) ta rut ra
va
hay Ic™ ~
coCUCm
7t
MV +2 ^Cm
( 1 1 vcoCy
71
2
U,
v coCy
(2.5.6)
(2.5.7)
(2.5.8)
47
Vdi cac ky hieu Ic , Uc la cac tri sd hieu dung cua ic(t) va uc (t)
I — ^Cm
' " " T T
U -H em
U c _ J 2
he thurc (2.5.8) co the: viet la
I - Uc l c - / ,
Ta djnh nghla cac dien ap hieu dung phurc
Uc = U c eJVuc = U c Zv/Uc
U = UeJVu = U Z y u
va dong dien hieu dung phurc
Ic = Ic eJV'c = Ic Zvj/'c
Tir (2.5.9) ta co
(2.5.9)
(2.5.10) (2.5.11)
(2.5.12)
i - I eJM/ic - - H e AC - 1C e _ / J
coC
= (coC)(
J| Vuc
hay
Uc eJH,uc V 2
ic = (jcoC)Uc
.71
(Chu y rang e 2 = co s—+ jsin —= 0 + jl = j ) 2 J 2
(2.5.13)
He thurc (2.5.13) con co the’ viet la: . Uc _ Uc
(2.5.14)
Lc ~ r - n “ ( 1 vj®c ,
. 1
-J coC
(2.5.15)
48
hoac Ur = jcoC Ic -_ l j ~J coC
Cac hd thurc (2.5.14) va (2.5.15) cho ta quan he giua Uc va ic co dang gidng vdi cac bidu thurc cua djnh luat Ohm dudi dang phiic cho dien trd va cho didn cam. Ngudi ta dua vao ky hieu
Xr = —
c coC
goi la dien khang cua dien dung (capacitive reactance) va ZG - JXC -
(2.5.16) (2.5.17)
goi la tdng trd phuc (complex impedance) hay tong trd (impedance) cua dien dung C.
Ta co the viet (2.5.14) dudi dang
i -He ir —-JXC
vcoCy
hoac _ z cic - ( - jx c)ic - -j coC
(2.5.18) (2.5.19)
Cac he thurc (2.5.18) va (2.5.19) duoc goi la cac bieu thurc cua dinh luat Ohm dudi dang phuc cho dien dung.
Tu (2.5.19) ta thay rang, dong dien hinh sin trong dien dung vuot trudc ve 7t
pha so vdi dien ap tren no mot goc la — , hay noi cach khac, dien ap hinh sin tren 7t dien dung cham sau ve pha so vdi dong dien trong no mot goc la —. Dieu nay
.n
duoc the hien d thira sd - j = e 2 trong bieu thuc cua tdng trd phuc cua dien dung :
f 1 ^
2 c 2(2.5.20)
Zc ~ ~j coC ~~ j X c _ v(OCyZ - £ = Xc Z - £ Do thi vecto cho Uc va Ic duoc ve d H.2.5.2. Bidu thurc cua trj sd turc thdi cua dong dien ic(t) la: ic (t) - 1C m sin ®t + Vu + \
UC m
vcoC, U r
'_ 1 _' vcoC,
sin sin
« t + Vuc + 2
cot + y u + - (2.5.21)
71
2 uc = u Hinh 2.5.2
49
Cac dudng cong cua uc(t) va ic(t) cho trudng hop v|/u = V U(_ = 0 duoc vc d H.2.5.3.
Hinh 2.5.3
2.5.2. Cong suat turc thdi pc(t) va cong suat phan khang Qc
Vdi cac chieu duong cua uc(t) va ic(t) chon gidng nhau nhu d H.2.5.1 thi cong suat tire thdi pc(t) trong dien dung bang
pc (t) = uc(l) ’c(t)
= UCm sin (cot + y uc ) x ICm sin (cot + V|/ic )
= x c Im sin(cot + y Uc)cos(o)t + v|/Uc)
hay pc (t) = Xc I2 sin2(cot + \(/Uc)
= Q c sin2(cot + vj/Uc) (2.5.22)
Ta nhan thay rang cong suat turc thdi pc (t) dao dong hinh sin vdi tan sd goc 2co (gap doi tan sd goc cua nguon dien ap) vdi bien do bang:
Q c = x c l2 (2.5.23)
Ngudi ta djnh nghla cong suat tac dung Pc la tri sd trung binh cua cong suat tifc thdi pL(t) trong mot chu ky cua dong dien:
1 rT
pc = x P c ^ d t (2.5.24)
I Jo
Thay (2.5.22) vao (2.5.24) ta de thay rang:
Pc = Tf l x c Ic s in 2 (cot + V Uc) dt = 0 ' 2.5.25)
50
Ve mat vat ly, diiu nay co nghla la d didn dung khong co su tieu hao nang luong ma chi co su trao d<5i nang luong giua ngu6n va dien trudng. Trong mdi chu ky, luong nang luong do nguon dua vao dien trudng cung bang luong nang luong ma dien trudng tra lai ngudn. Di6u nay the’ hien d su bang nhau cua cac phan dien tich duong gidi han giua dudng cong pc(t) va true thdi gian va cac phan dien tich am gidi han giua dudng cong pc(t) va true thdi gian trong mot chu ky T d tren H. 2.5.3.
De dac trung cho cudng do cua su trao doi nang luong giua nguon va dien trudng cua dien dung, ngudi ta dung bien do ciia cong suat tuc thdi p c (t) tuc la:
QC = X CI2 (2.5.26)
goi la cdng suat phan khang (reactive power) cua dien dung. Cong suat phan khang Qc co don vi la volt - ampere phan khang (volt - ampere reactif), viet tat la VAr.
Vi du 2.5.1 :
Mot dien dung C = 20 pF duoc ndi vao ngudn dien ap hinh sin u(t) = 220\/2 sincot V, vdi f = 50 Hz. Hay tim Zc , ic , ic (t), pc(t) va Qc . Giai :
Tdng trd phirc cua dien dung bang
= -J- 7 ■ 1 1 c J coC J 2jifC
1
271 x 50 x 20 x 10= — j 159,15 Q
Dong dien hieu dung phuc trong dien dung bang
Ic =
U 220Z0= jl, 3823 = 1,3823Z— Zc — jl 59,15
Ddng dien hieu dung Ic = 1,3823 A.
Bieu thurc cua ddng dien tire thdi trong dien dung la % \
.(t) = (l,3823)V2 sin
Cdng suat tire thdi
pc(t) = uc(t) ic(t)
1007114,- A = (1,3823)72cos(lOOTTt) A V ■J
= 220V2 sin(100m )x 1,3823 72 cos(100nt)
= 304,11 sin(2007tf) W
51
i
Cong suat phan khang
Q c = X c I q = (159,15) (l,3 8 2 3 )2 = 304,11 V A r
2.6. MACH RLC
2.6.1. Djnh luat Ohm dang phurc va tong trd phurc cho mach RLC
Bay gid ta xet mot mach dien don gian gom cac phan tu dien trd R, dien cam L va dien dung C ndi tiep, goi tat la mach RLC (H.2.6.1).
Khi dien ap dat vao mach u(t) la dien ap hinh sin u(t) = U m sin(cot + y u) thi d
u R(t) u L(t)
u(t)
i(t)
u c(t)
che do xac lap dong dien trong mach cung la dong dien hinh sin co cung tan sd goc co.
Hinh 2.6.1
Neu dat i(t) = Im sin(cot + v|/j) la dong dien trong mach (d che do xac lap) ta can tim Im va \jtheo Um, V)/u, R, L, C va co da cho.
Ap dung dinh luat Kirchhoff vd cac ap (hay dinh luat Kirchhoff thu hai) cho vong RLC ta co
(2.6 .1)
VI cac dien ap uR, uL va uc va u(t) deu la cac ham hinh sin co cung tdn sd goc co nen ta co the’ dung cac anh phurc U R, U L, Uc va U cua chung va viet phuong trinh theo dinh luat Kirchhoff cho cac ap dudi dang phuc: UR+UL+UC=U (2.6.2)
Theo dinh luat Ohm dang phurc cho cac phan tu R. L va C ta lan lum co: Ur =RI (2.6.3)
(2.6.4)
(2.6.5)
( 2 .6 .6 )
(2.6.7)
52
UL = jcoL I= jX Li = Z Li
vOi Z L = JX L = J wL Zc = —j x c = _ J1 1
coC jcoC
Tl> (2.6.2) va (2.6.3) * (2.6.7) ta co :
Ri + j X Li - j X c i = U (2.6.8)
hay (R + j X L - j X c ) i = [ R + j ( X L - X c ) ] i = ( R + j X) i = U (2.6.9)
hay Zi = U (2.6.10) voi Z = R + jX = R + j( X L - X c ) = R + j coL -1
coC(2.6. 11)
He thufc (2.6.2) duoc goi la dinh luat Ohm dang phuc cho mach RLC va Z xac dinh boi (2.6. 11) duoc goi la tong trd phifc (complex impedance) hay tdng trd (impedance) ciia mach RLC.
Ta cung co the viet (2.6.10) dudi dang:
I
U
( 2 .6 . 12)
Dat ta co
_ , „ j Xc thi X = XL - Xc > 0 va cp > 0. Trong trudng hop nay, dong dien cham pha sau dien ap.
Neu XL < Xc thi X = XL - Xc < 0 va cp < 0. Trong trudng hop nay, dong dien vuot trudc dien ap.
Trong trudng hop dac biet XL = Xc thi X = XL - Xc = 0 va cp = 0 tuc la dong dien cung pha vdi dien ap.
53
Cac do thi vecto ve cho mach RLC cho 3 trudng hop nay nhu 6 H.2.6.2. Trudng hop dac biet (XL = Xc ) se duoc xet ky hon trong muc 2.7.
U,
UL
U,
a)
b)
U,
U = U ,
c)
Vf du 2.6.1
Hinh 2.6.2
Cho mach dien RLC (H.2.6.1) vdi R = 100 Q; L = 200 mH; C = 20 ^F. Biet u(t) = 1 2 0 ^ sin co t V va f = 50 Hz. Hay tmh Z, i, U R, U L va U c .
Giai :
Ta co co = 2 n f = 2rtx50 » 314,16 rad/s.
XL = coL = 314,16x0,2 = 62,832 Q.
1
X c =- = 159,15 Q
314,16 x 20 x 10-6
X = XL - Xc = 62,832 - 159,15 = - 96,318 Q.
Vay tdng trd phuc ciia mach la :
Z = R + jX = 1 0 0 - j96,318 = 138,84Z - 43,93° Q
Dong dien hieu dung phuc trong mach bang :
120Z0 o= 0,6225+ j0 .5996 = 0,8643Z43.93° A Z 100 — j96.318
Dien ap hieu dung phuc tren cac phan tu :
U R = R i = 100x(0,8643Z43,93°) = 86,43Z43,93° V
U L = jcoLI = (j62,832)(0,6225 + j0,5996)
= -37.674 + j3 9 ,113 = 54.306Z133,93 V
54
uc = -J1coCI = ( - j l 59,15 )(0 ,6225 + jO, 5996)
= 95,426-j99,071 = 137,55Z - 46,07 V
Bieu thuc cua dong dien tire thoi:
i(t) = 0,864372 sin (cot + 43,93°) A
Bieu thurc cua dien ap tutc thdi
tren cac ph£n tir:
uR = 86,4372 sin (cot + 43,93° ) v
uL = 54,30672 sin (cot+ 133,93°) V
uc = 137,5572 sin (cot - 46,07°) V
Do thi vecto bieu diin cac dong
dien va dien ap phirc trong mach duoc
vedH.2.6.3.
Chu y rang vi XL < Xc
hay X = XL - Xc < 0 nen cp < 0, dong
dien i(t) vuot pha trudc dien ap u(t).
2.6.2. Cong suat turc thdi p(t). Cong suat tac dung P. Cong suat phan khang Q va cong suat bieu kien S tron g mach dien a) Cong suat ttxc th&i p(t)
Cong sutft tire thdi, ky hieu la p(t), cua mot bo phan mach dien giua hai cuc A va B la tich sd ciia dien ap tuc A thdi dat vao mach u(t) = uAB(t) va dong dien i(t) = iAB(t). u(t)
Vdi chi6u duong ciia u(t) va i(t) chon giong nhau B (hudng tir A den B) nhu d H.2.6.4 thi p(t) la cong suat tiic thdi tieu thu boi bo phan mach dien giua 2 cuc A va B.
Trong trudng hop mach RLC d H.2.6.1 ta co:
p(t) = u (t) i(t) = ( u R(t) + uL(t) + uc ( t))i(t)
= u R (t).i(t) + uL(t).i(t) + uc (t).i (t)
i(t)
Hinh 2.6.4
= PR (t ) + PL(t) + P c ( 0 (2.6.18) 55
Gia su i ( t ) = Im sin cot ta co uR = R Imsincot u l = ojLImsin f n N
cot + —
v 2 J
= XLIm coscot
uc =\COCy I m s in = - X c Im coscot
va
Pr = uRi(t) - Rim sin2 cot = RI1 -c o s 2cot = RI2 (l - cos2cot) (2.6.19)
/ \ \ v .2 • sin2cot
Pl = ul (t) i(t ) = X LI msin“ tc oscot = XLi ; - — — = X LI sin2cot (2.6.20) va
/ \ •/ \ xr t2 t 2 sin2cot ,7 Pc = uc (t) ‘(t) = - x c l m sincot coscot = - X c Im— - v =- X c I sin2cot (2.6.21) ,2
Vay ta co
P (t ) = PR(t) + PL(t ) + P c ( t )
= RI2 (l -cos2cot) + (X L -X c )l 2 sin2cot
= RI2 (1 - cos2cot) + XI2 sin 2cot (2.6.22)
Ta nhan thay cong suat tire thdi p(t) cua mach RLC gom hai thanh phan co tmh chat khac nhau.
Thanh phan thu1 nhat pR (t) = RI2 (l-cos2cot) luon khong am pR(t)>0va co tri so trung binh trong mot chu ky bang
P = i f pR dt = ^ f R I2(l-c o s 2 c o t)d t = R I2 (2.6.23) 1 •'0 1 JO Thanh phdn thu hai dao dong vdi tan so 2co
Pl c = P l + P c = xi sin2wt (2.6.24)
co bien do bang Q = XI2 va co tri so trung binh trong mot chu ky bang khong
1 rT 1 fT ?
PLCdt = ^ XI sin2cotdt = 0 T Jo T Jo (2.6.25)
56
Thanh phSn thur nha't pR (t) cua cong suat tuc thdi la cong suat tieu thu thuc sir tren dien trd R tuong irng vdi hieu urng Joule (bien ddi dien nang thanh nhiet nang). Thanh phan thu hai pLC (t)ciia cong suat tuc thdi la cong suat "tieu
thu" boi dien cam L va dien dung C tuong ung vdi su trao doi nang luong giua tir trudng va dien trudng cua mach dien va nguon dien.
b) Cdng suat tac dung P
Ngudi ta dinh nghla cdng suat tac dung (active power) P la tri sd trung binh cua cong suat tuc thdi trong mot chu ky T cua dong dien.
P = Y j j p ( t ) d t (2.6.26)
Tir (2.6.22), (2.6.23) va (2.6.25) ta de thay rang
1 f T j 1 f T
T Jo T Jo
Don vi cua cong suat tac dung la watt (viet tat la W).
De’ dac trung cho cong sua't trao doi nang luong giua dien trudng va tir trudng ciia mach vdi nguon dien, ngudi ta dung bien do
Q = XI2 (2.6.28)
ciia thanh phan pLC(t)- Dai luong Q nay duoc goi la cdng suat phan khang (reactive power) va co don vi la VAr (volt - ampere reactif).
Chu y rang, tir do thi vecto d H.2.6.2 ta co:
U R = RI = U coscp .(2.6.29)
U LC = XI = Usin(p (2.6.30)
nen P = RI2 = Ul coscp (2.6.31)
va Q = XI2 = Ulsincp (2.6.32) Ta dinh nghla
S = Vp2 + Q 2 = UI (2.6.33)
la cdng suat bieu kien (apparent power) vdi don vi la VA (volt - ampere) ta co P = Scoscp (2.6.34)
va Q = Ssincp (2.6.35) Thira sd coscp trong (2.6.34) duoc goi la he so cdng suat (power factor). He sd cdng sua't cd y nghla rat quan trong va se duoc xet ky hon d muc 2.10.
57
c) Cdng suat phuc
De tinh P, Q va S theo cac dien ap hieu dung phuc U va dong dien hieu dung phirc, nguoi ta dinh nghla cdng suat (bieu kien) phirc (apparent complex power)
S = U I (2.6.36)
*
trong do I la so' phirc lien hop ciia dong dien hieu dung phirc.
Giathiet i = I.eJM' 1 va U = U.eJ'|/u
ta co
S = UI = (U eJ'|,u )x (Ie “JM'1) =UIej(Vu~Vi) = UIeJlp (2.6.37) hay S = Ul (cos (p + j sin cp) = Ul coscp + jUI sin cp = P + jQ (2.6.38)
Vay P = Re jsj = Re ju I j (2.6.39) Q = Im jsj = Im ju i j (2.6.40)
O day Re { } la phan thuc (real part) va Im { } la phan do (imaginary part) ciia mot sd phirc.
Vi du 2.6.2 :
Tmh cac cdng sua't tire thdi p(t), cdng suat tac dung P, cdng suat phan
khang Q, cdng suat bieu kie'n S va S trong mach RLC d vf du 2.6.1. Gidi :
Ta cd u(t) = 120V2 sin cot V
i(t) = 0,8643^2sin(cot + 43,93°) A
Vay cdng suat turc thdi
p(t) = u(t)i(t) = (l20 V2sincot)( 0,8643V2j sin (o)t + 43,93'
= 2(103,7)(sincot)sin(cot + 43,93° j
= 103,7 co s(-43,93°)-cos(2cot + 43,93°)J
= 103,7 cos (-43,93° j - 103,7 cos (2cot + 43,93° j
= 74,7 - 103.7 cos(2cot + 43,93° j W
58
Cdng sua't tac dung
P = RI2 = 100 x (0,8643)2 = 74,70 W
hay P = Ul coscp = 120 x 0,8643 x cos (-43,93° ) = 74,7 W Cong sua't phan khang
Q = XI2 = -96,32 x (0,8643)2 = -71,95 VAr
hay Q = Ul sin cp = 120 x 0,8643 sin (-43,93° j =-71,95 VAr
Cdng sua't .bieu kien
S = UI = 120x0,8643 = 103,716 VA
hay S = Vp2 + Q 2 = y(74,70)2 + (-7 1 ,9 5 )2 =103,7 VA He sd cdng sua't
Cdng sua't (bidu kien) phuc
S = U I= (l2 0 Z 0 ° )(0 ,8 6 4 3 Z -4 3 ,9 3 ° )
= 103,7Z-43,93° = ( 7 4 ,7 0 - j71,95) VA.
2.7. CONG HlTdNG DIEN AP TRONG MACH RLC
Trong mach dien cd dien trd R, dien cam L va dien dung C noi tiep, goi tat la mach RLC (H.2.7.1) cd mot tinh trang dac biet khi dien khang XL cua dien cam bang dien khang Xc ciia dien dung, tuc la
X, = X r hay coL = —— L coC
Luc nay, dien khang ciia toan mach triet tieu
X = X L - Xc = 0
va tdng trd ciia mach bang dien trd
Z = R + jX = R
Ddng dien trong mach se ciing pha vdi dien ap ciia ngudn
(2.7.1)
(2.7.2)
(2.7.3)
(2.7.4)
59
UL U c U L
71
•
U , •1
j U _= RI R
2
Uc
Hinh 2.7.1
Dien ap hieu dung phirc tren dien cam U L va dien ap hieu dung phirc tren dien dung Uc co moduyn bang nhau nhung nguoc pha nhau:
U L = j X Li (2.7.5)
Uc = - j X c i (2.7.6)
tuc
va do do
UL = - U C U L + U C = 0
(2.7.7) (2.7.8)
Do (2.7.7) va (2.7.8) ngudi ta goi tinh trang nay la cong huang dien dp.
Do thi vecto tuong urng vdi tinh trang cong hudng dien ap duoc ve d H.2.7.1.
Gia thiet rang dien trd R. dien cam L va dien dung C la cac hang so, tri sd hieu dung U ciia dien ap nguon khong ddi nhung tan sd goc co ciia ngudn co the bien thien tir 0 den oo. Ta hay khao sat sir bien thien ciia ddng dien hieu dung I theo vdi tan sd goc co.
Ta co
i - b
u
R + j coL -coC
(2.7.9)
va I =U \2
(2.7.10)
IR2 +
coL- — coC
T in sd goc co0 a day xdy ra cong hudng dien ap duoc xac dinh tir he thuc
woL = — r (2 .7 . 1))
COnC
60
Tir do va
0)0 = LC
co„ =■
" V lc
(2.7.12) (2.7.13)
Nguoi ta goi co0 la tan so goc cong huong cua mach RLC, con tan so f() duoc xac dinh boi
2tiVlC
duoc goi la tan so cdng liudng cua mach RLC.
(2.7.14)
Tir (2.7.10) va (2.7.11) d i dang tha'y rang, khi co cong huong dien ap thi dong dien hieu dung dat tri so cuc dai va bang
U
Id = R
Tri sd I() duoc goi la ddng dien cong hudng.
(2.7.15)
Ky hieu UL0 la dien ap hieu dung tren dien cam khi cong hudng, Uco la dien ap hieu dung tren dien dung khi cong hudng, ta cd:
(2.7.16)
Chu y rang, khi cong hudng
U = Rl()
Ta dinh nghla he so pham chat Q bang :
Q =Ulo _ Uco “ oL _ 1 1 L
U U R OfiCR R V C
Neu J — > R thi Q > 1 va UL0 = UC() > U
Neu J — < R thi Q < 1 va UL0 = Uco < U
(2.7.17)
(2.7.18) (2.7.19) (2.7.20)
D i thay ro y nghia cua he so pham chat Q ta can khao sat dac tinh
In f V“ o )
6 day ~ la ty sd cua ddng dien hieu dung I vdi ddng dien khi cong hudng 1, In
CO
con — la ty sd cua tan sd goc a) vdi t 2.765X103 __
U U 220
Ta nhan thay rang, vdi he so pham cha't Q - 12,57 > 1 thi cac dien ap tren dien cam va dien dung khi cong hudng ldn ga'p 12,57 lan dien ap cua ngudn. Dieu nay co the gay nguy hidm doi vdi ngudi hoac thiet bi.
Vf du 2.7.2 :
Trong mach dien d vi du 2.7.1. gia su cac tri so cua cac thong so L, C va U van giu nguyen nhu cu nhung R = 200 Q. Tinh I„, UR0, UL0 va Uol khi cong hudng dien ap?
Gicii :
Cong hudng dien ap xay ra d tan sd:
1
f<> =2rtVLC 27iv/400xl0"3 x 2 5 ,3 3 x l0 " 6= 50 Hz
Ddng dien khi cong hudng bang:
U 220
0 R 200 ’
Cac dien ap tren R, L, C khi cong hudng bang:
U R = U = 220 V
He sd phaim chat cua mach bay gid la:
1 l 400x10
RV C 200^25,33x 10“= 0,6283 <1
va U L() ='Uco = QU = 0,6283x220 = 138.3 V.
Ta nhan thay rang vdi Q < 1 thi khi cong hudng, dien ap tren dien cam va dien ap tren dien dung be hon dien ap cua ngudn.
Hai vi du 2.7.1 va 2.7.2 cho ta thay rang khi ndi mach RLC ta can tmh trudc xem d tan sd da cho trong mach cd xay ra cong hudng dien ap khong, va neu xay ra cong hudng thi ddng dien I va cac dien ap U L, Uc khi cong hudng la bao nhieu.
2.8. MACH R, L, C SONG SONG VA
CONG HlfCJNG DONG DIEN
Xet mach dien gdm 3 nhanh R, L, C ndi
song song d che do xac lap hinh sin (H.2.8.1).
Hinh 2.8.1
64
Goi IR, IL, ic va I la cac dong dien nhanh, theo djnh luat Kirchhoff ve cac dong, ta co
i = i R+ i L+ i c (2 .8.1)
Theo dinh luat Ohm cho m6i nhanh ta co
U
I r _ R
u u
jcoL= U -J coL
l<=~ z ~ / cu\
( 2 .8 .2 ) (2.8.3)
U
coC
= U (jcoC)
(2.8.4)
Vay voi
1 =R
Y = R - j G =R
1
coL coL
- coC U = YU
-toC = G - j ( B l - B c ) = G - jB
(2.8.5) (2.8.6 ) (2.8.7)
B, =coL
(2.8.8)
va Bc = coC (2.8.9) Y duoc goi la tong ddn phuc (complex admittance) cua mach, G la dien dan tac dung va B la dien dan phan khang.
Tu cac do thi vecto, ta nhan tha'y rang neu IL > Ic thi I cham sau U (H.2.8.2a). Neu IL < Ic thi I vuot trudc U (H.2.8.2b).
- Trong trudng hop dac biet, khi IL = Ic (2.8.10) thi IL + ic = 0 (2 .8. 11) va i = i R + ( i L ^ i c ) = I r (2.8.12)
tuc la i cung pha voi U (H.2.8.2c). Tinh trang dac biet nay duoc goi la cong hudng ddng dien
Tir (2.8.6) va (2.8.11) ta suy ra rang dieu kien de co cong huong dong dien trong mach R, L, C song song la:
B = - V - cdC = 0
coL (2.8.13)
65
hayconLr _(0°C (2.8.14) Ta can chu y rang khi cong huong dong dien thi dong dien I co tri so nho U
nhat va bang IR =R
I = Ic
b)
Hinh 2.8.2
c)
2.9. CONG HUONG DONG DIEN TRONG MACH SONG SONG CO CUON DAY VA TU DIEN
Xet mach dien g6m 2 nhanh noi song song (H.2.9.1). O day R L la dien tro bi6u dien cho cac ton hao nang luong trong cuon day dien cam va Rc la mot dien tro bi£u di£n cho ton hao nang luong trong tu dien. Ta co:
U U
u ( R l - J X l )
/ _ \ / \
R ;
-jU - %X l , (2.9.1)
II Z l Rl + jX l
r 2 + x 2
VR 1 + x 2l J ^ R 2+Xlj
u u U ( R c + j X c ) = 0 VC> l c Z c R c - j X c R c + X 2
Rr
v Rc + xc j
(2.9.2)
R ,
R r
\ f
X,
Vay i = I, + ir =U -jU R l + X l R6 + x ^ y
Tu (2.9.1) ta nhan thay rang, neu cac thong so cua mach thoa man dieu kien:
(2.9.3)
Xr
R“ + X l R c + x c
thi I = U R . R r Rl + Xj^ Rc + Xc
lire la I cirng pha vdi dien ap U . 66
(2.9.4) (2.9.5)
Tinh trang dac biet nay duoc goi la cong huong dong dien trong mach song song cua cudn day dien cam va tu dien.
Dd thi vecto cua cac dong dien cho mach nay a tinh trang khong cong hudng ducrc ve d H.2.9.2a va do thj vecto cho tinh trang cong hudng ddng dien duoc ve d H. 2.9.2b.
a) b)
Hinh 2.9.2
Dieu kien cong hudng ddng dien (2.9.4) cd the viet la:
1
“ L coC
R2l + (coL)2Rc +
coC
haycoL
coC(2.9.6)
R^+(coL)2 1 + (coCRc )2
Ndi chung dieu kien (2.9.6) dan tdi mot phuong trinh bac hai doi vdi co, L, C, Rl hoac Rc.
Vi du 2.9.1:
Xet mach dien d H. 2.9.1 vdi RL = 15 Q, Rc = 30 Q, Xc = 30 Q. Hay tim tri sd cua dien cam de cd cong hudng ddng dien d tSn so f = 50 Hz. Ti'nh trj sd cua
ddng dien cac nhanh tuong ung vdi tinh trang cong hudng neu U = 100Z0° V . Giai :
Trj sd XL de cd cong hudng ddng dien duoc xac dinh tu he thuc (2.9.4): X, X,
r 2l + x 2 Rc + Xc
67
, r X L 30 1 tuc la —-— —- = — -------------- = —
15 + 30 + 30 60
Ta duoc mot phuong trinh bac hai doi voi XL:
X^ - 60Xl + 225 = 0
Phuong trinh nay co 2 nghiem la
60 + Veio2"- 900
X L, = ------- — z---------- = 55,98 Q
6 0 - V 6 0 2 -9 0 0
va X L2= --------^ ---------- = 4,019 Q
~2
Cac tri so' cua dien cam tuong ung se la
X QR
L ' = 2^ = 2 ^ 5 0 = ° J7 8 2 H = 178' 2 m H
L! s T 7 = r ^ s | 2 ' 7 9 x i r ’ H = 2 2 7if 2kx 50
= 12,79 mH
Vdi I2| = 178,2 mH thi dong dien cac nhanh se la
i - R ^ = T ^ b 8 = (° '4466‘ J,' 667)A
‘c = R T q x 7 = « n 3 o = < ,-6 6 7 - j |'667) A
va i = i L+ ic =0,4466+1,667 = 2,114 A
Vdi L2 = 12,79 mH thi ddng dien cac nhanh se la
U 100 ,
Il " Rl + j X L2 ” 15 + j4,019 _ (6,220_ J1’667) A
U 100 .
Ic = Rc - j X c - 3 0 - j30 " ^1,667 + J1’667) A
va j = i. + ir =6,220+1,667 = 7,887 A
2.10. NANG CAO HE SO CONG SUAT
Tai cua he thong dien trong cdng nghiep chu yeu la cac dong co dien khong ddng bo. Dd la cac tai cd tinh chat dien cam. cd the bieu dien bang dien trd Rt
68
ndi tiep vdi dien khang XL (H.2.10.la). Ddng dien IL cung ca'p cho dong co 71 cham sau dien ap U mot goc (pL vdi 0 < (pL < — nhu ve d dd thi vecto H.2.10. lb
Hinh 2.10.1
Ddng dien chay vao dong co dien la
R + j x L ' =u r 2 + x 2l■JUX,
i 0 U ( R - j X , ) , J R
Ta phan tich IL thanh 2 thanh phan: \
R
R 1 + X
(2 . 10. 1)
L J
Thanh phan tac dung ILtd =U
cung pha vdi dien ap U
R2 + X2 ;
/X,
va thanh phan phan khang ILpk = -jU
|U
v
—-------— cham sau dien ap U goc — R + x L J ' ' 2
Chinh do thanh phan phan khang ILpk nay ma he sd cdng suat cos(pLcua dong co thudng nho hon l.v i'd u coscpL= 0,8 (hay cpL =36,87°).
Neu goi P la cdng suat tac dung cua dong co thi ddng dien IL cd tri sd (moduyn) bang:
P
I, U coscpL(2.10.2 )
He thuc (2.10.2) chung to rang, vdi P va U da xac dinh thi IL cang ldn khi coscpLcang nho. Ddng dien IL ldn se gay ra tdn hao dien nang tren dudng day dien. Hon nua neu he sd cdng suat cua ca he thong dien cd tri sd thap thi cac nha may phat dien se khong the phat duoc cdng suat tac dung ldn nhu da thiet ke gay ra lang phi rat ldn.
69
Vi the can phai dat va'n de nang cao he sd cong sua't cua cac tai trong he thong dien.
De nang cao he so cdng sua't cua dong co dien khong ddng bo, ngudi ta ndi song song vdi no vdi tu dien co dien dung C nhu ve d H.2.10. la.
Khi cd tu dien thi ddng dien tren dudng day se la i = IL + i c , ddng dien I se cham sau dien ap mot goc cp < cpL vdi coscp > coscpL .
Tir dd thi vecto (H.2.10.1) ta de thay rang:
lc = I LPk “ Ipk = I idtg(PL - I |d t89 = I,d(tg9L - 18 2 + ( X l + Xc )2 u
R + X
R -jXI) cp = arctgXL - X C
k) 1 =
U
R
m)
). BT.2.12. Ngifdi ta djnh nghTa giai thong cua mach RLC la giai tan d do vdi I 0 = — la dong dien cong hifdng. Hay tim giai thong cua mach RLC
d BT.2.11.
BT.2.13. Khao sat va ve difdng cong cong hifdng I / 10 = f(a > /w 0 ) cua cac mach RLC vdi cac he sd pham chat Q = 1, Q = 5 va Q = 50. Tinh cac tri sd l/l0 vdi cd/ coq = 0,8 va w/co0 = 1.2 tifdng Cfng vdi cac trj sd cua Q ndi tren. Cho cac nhan xet ve anh hifdng cua Q doi vdi tinh chon loc tan sd cua cac mach RLC.
Hifdng dan : Sir dung chifong trinh may tinh viet bang MATLAB d phu luc PL.2.2
BT.2.14. Cho mach dien d H.BT.2.14 vdi
R = 1 kQ, L = 20 nH, C = 20 pF
va j(t) = 10\/2 sin cot mA.
H.BT.2.14
75
Tim tan so co de co cong hirong dong dien. Tinh dien ap u(t), iR(t). iL(t) va ic (t) khi cong hirdng.
BT.2.15. Cho mach dien 0 H.BT.2.15
voi
R = 100 n , L = 100 mH
va u(t) = 100a/ 2 sin lOOOt V.
Tim dien dung C de co cong hifdng dong dien.
Tinh iR(t), iL(t), ic (t) va i(t) khi cong huong.
BT.2.16. Cho mach dien 0 H.BT.2.16 vdi R = 100 Q, L = 0,1 H
u(t) = 100\/2 sin lOOOt V.
Tim trj so cua dien dung C de co cong huong dong dien. Tmh iL(t), ic (t) va i(t) khi cong hudng.
u(l) u(t)
H.BT.2.15
H.BT.2.16
cho
BT.2.17. Trong mach dien a H .BT.2.17 ^ i R 1 = 5 Q, R2 = 10 Q, C = 50 F va
U = 100Z0° V .
Tim tri so cua dien cam L de co cong hudng dong dien d tan so goc co = 1000 rad/s. ^ Tinh i ,, i 2, I khi cong hirdng. Ve do thj vecto.
BT.2.18. Cho mach dien d H .BT.2.17 vdi R 1 = 5 Q, R2 = 10 Q,
L = 100 mH, C = 50 jiF.
H.BT.2.17
Tim tan so goc co0 de co cong hudng ddng dien. Tinh i , , i 2 va I khi cong hirong neu U = 100Z 0° V . Ve do thi vecto cho tri/dng hop cong hi/dng
76
C huang 3
CAC PHUONG PHAP GIAI MACH DIEN
TUYEN TINH PHUC TAP
Giai mot mach dien la tim cac dong dien hoac cac dien ap cua tat ca cac nhanh hay cua mot so nhanh nao do cua mach dien khi da biet so dd cua mach va cac thong so cua cac phan tir cua mach.
Trong chuong nay ta se xet cac phuong phap de giai cac mach dien tuyen tmh phuc tap d che do xac lap hinh sin trong trudng hop mach dien khong co h6 cam. Trudng hop mach dien co h6 cam se duoc xet d chuong tiep theo. Didu nay se giup cho viec tiep thu noi dung cua hai chuong nay trd nen d-*—
© 6 ©
© ©
b)
a)
Hinh 3.1.1
Graph ciia mach dien nay duoc ve d hinh 3 .1.lb.
Mach dien gom cd m = 6 nhanh va n = 4 nut. Gia thiet da cho tri sd cua sue dien dong hieu dung phuc E,va E2 cua cac ngudn vdi cac chi£u duong da chon, cac tri sd ciia cac tdng trd phirc Z ,, 'Z2, Z,, Z4, Z, va Z6 ciia cac nhanh va can tim tri sd ciia cac dong dien hieu dung phuc cua cac nhanh.
77
Theo phuong phap cac dong dien nhanh ta tien hanh cac budc sau day: - B udc 1: D at ky hieu va chon chieu duong cho ddng dien cac nhanh. Ta ky hieu I, , \ 2, I3, i4 , I5 va I6 la cac dong dien hieu dung phuc trong cac nhanh co tong tro tuong ting la Z,, Z2, Z3, Z4, Z, va Z6.
Doi vdi dong dien trong m6i nhanh, ta co the chon mot trong hai chieu co the lam chieu duong.
Doi vdi cac nhanh cd nguon sdd, ngudi ta thudng chon chidu duong cua ddng dien nhanh gidng vdi chieu duong da chon cho cac sdd. VI vay. ta chon chieu duong cua i, giong vdi chieu duong cua E[ va chon chieu duong cua I2 gidng vdi chidu duong cua E2 .
Doi vdi cac nhanh khong cd ngudn sdd, thi ta cd the chon mot chieu tuy y lam chieu duong cho ddng dien nhanh. Gia sir ta chon cac chiSu duong cho i3, i4 , i5 va i6 nhu cac mui ten ve tren hinh 3.1.1.
- B udc 2 : Viet cac phuong trinh doc lap tuyen tinh theo dinh luat K irchhoff thif nhat (cung goi la dinh luat Kirchhoff cho cac ddng). Cac phuong trinh nay cd dang:
nut
Ta quy udc rang cac ddng dien cd chieu duong di ra khoi nut duoc lay vdi dau duong (+), va cac ddng dien cd chieu duong di vao nut duoc lay vdi da'u am (-).
Cac phuong trinh theo dinh luat Kirchhoff thti nhat viet cho cac nut © , @ va © lan luot la:
—i, + i3 + i4 = o ( 3 .i .i )
- i 2 - i 3 + i 5 = o (3. 1.2 )
i 2 - i 5 + i6 = o (3.1.3)
Chu y rang phuong trinh theo dinh luat Kirchhoff thti nhat viet cho nut @
i, - i4 - i 6 = o (3 . 1.4 )
khong doc lap tuyen tinh vdi he cac phuong trinh (3.1.1), (3.1.2) va (3.1.3). That vay. neu cong cac phuong trinh (3.1.1), (3.1.2) va (3.1.3) lai ta se duoc:
—i i + i 4 + i6 =o ( 3. 1.5 )
Dem nhan phuong trinh (3.1.5) vdi (-1) ta se duoc phuong trinh (3.1.4). Dieu nay chting to rang phuong trinh (3.1.5) la mot td hop tuyen tinh cua cac phuong trinh (3.1.1), (3.1.2) va (3.1.3).
78