🔙 Quay lại trang tải sách pdf ebook 55 Đề Thi Học Sinh Giỏi Toán 7 Cấp Huyện (Có Đáp Án) Ebooks Nhóm Zalo TỦ SÁCH LUYỆN THI 55 ĐỀ THI HỌC SINH GIỎI TOÁN 7 CẤP HUYỆN (CÓ ĐÁP ÁN) 55 ĐỀ THI HỌC SINH GIỎI MÔN: TOÁN LỚP 7 ĐỀ SỐ 1: ĐỀ THI HỌC SINH GIỎI HUYỆN MÔN TOÁN LỚP 7 (Thời gian làm bài 120 phút) Bài 1. Tìm giá trị n nguyên dương: a) 1 =; b) 27 < 3n < 243 n n .16 2 8 Bài 2. Thực hiện phép tính: 1 1 1 1 1 3 5 7 ... 49 ( ... ) + + + + − − − − − 4.9 9.14 14.19 44.49 89 Bài 3. a) Tìm x biết: 2x + 3 = x + 2 b) Tìm giá trị nhỏ nhất của A = x − 2006 + 2007− x Khi x thay đổi Bài 4. Hiện nay hai kim đồng hồ chỉ 10 giờ. Sau ít nhất bao lâu thì 2 kim đồng hồ nằm đối diện nhau trên một đường thẳng. Bài 5. Cho tam giác vuông ABC ( A = 1v), đường cao AH, trung tuyến AM. Trên tia đối tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho CI = CA, qua I vẽ đường thẳng song song với AC cắt đường thẳng AH tại E. Chứng minh: AE = BC ĐỀ SỐ 2: ĐỀ THI HỌC SINH GIỎI HUYỆN MÔN TOÁN LỚP 7 (Thời gian làm bài 120 phút) Bài 1:(4 điểm) a) Thực hiện phép tính: 12 5 6 2 10 3 5 2 2 .3 4 .9 5 .7 25 .49 A − − = − 6 3 2 4 5 9 3 2 .3 8 .3 125.7 5 .14 ( ) ( ) + + b) Chứng minh rằng : Với mọi số nguyên dương n thì : 2 2 3 2 3 2 n n n n + + − + −chia hết cho 10 Bài 2:(4 điểm) Tìm x biết: 1 4 2 3,2 a. ( ) x − + = − + 3 5 5 1 11 7 7 0 x x + + b. ( ) ( ) x x − − − = Bài 3: (4 điểm) a) Số A được chia thành 3 số tỉ lệ theo đó bằng 24309. Tìm số A. 2 3 1 : : 5 4 6. Biết rằng tổng các bình phương của ba số b) Cho a c =. Chứng minh rằng: c b Bài 4: (4 điểm) 2 2 a c a += 2 2 b c b + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE b) Gọi I là một điểm trên AC ; K là một điểm trên EB sao cho AI = EK . Chứng minh ba điểm I , M , K thẳng hàng c) Từ E kẻ EH BC ⊥ (H BC ∈ ). Biết HBE= 50o ; MEB=25o . Tính HEMvà BME Bài 5: (4 điểm) Cho tam giác ABC cân tại A có 0 A 20 =, vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh: a) Tia AD là phân giác của góc BAC b) AM = BC ……………………………… Hết ……………………………… ĐỀ SỐ 2: ĐỀ THI HỌC SINH GIỎI HUYỆN MÔN TOÁN LỚP 7 (Thời gian làm bài 120 phút) Bài 1:(4 điểm) a) Thực hiện phép tính: 12 5 6 2 10 3 5 2 2 .3 4 .9 5 .7 25 .49 A2 .3 8 .3 125.7 5 .14 − − = − 6 3 2 4 5 9 3 ( ) ( ) + + b) Chứng minh rằng : Với mọi số nguyên dương n thì : 2 2 3 2 3 2 n n n n + + − + −chia hết cho 10 Bài 2:(4 điểm) Tìm x biết: 1 4 2 3,2 a. ( ) x − + = − + 3 5 5 1 11 7 7 0 x x + + b. ( ) ( ) x x − − − = Bài 3: (4 điểm) c) Số A được chia thành 3 số tỉ lệ theo 2 3 1 : : 5 4 6. Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. 2 2 a c a d) Cho a c =. Chứng minh rằng: c b Bài 4: (4 điểm) += 2 2 b c b + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE b) Gọi I là một điểm trên AC ; K là một điểm trên EB sao cho AI = EK . Chứng minh ba điểm I , M , K thẳng hàng c) Từ E kẻ EH BC ⊥ (H BC ∈ ). Biết HBE= 50o ; MEB=25o . Tính HEMvà BME Bài 5: (4 điểm) Cho tam giác ABC cân tại A có 0 A 20 =, vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh: c) Tia AD là phân giác của góc BAC d) AM = BC ……………………………… Hết ……………………………… ĐỀ SỐ 3: ĐỀ THI HỌC SINH GIỎI MÔN TOÁN LỚP 7 (Thời gian làm bài 120 phút) Câu 1: Tìm tất cả các số nguyên a biết a 4 ≤ 9 9 Câu 2: Tìm phân số có tử là 7 biết nó lớn hơn Câu 3. Cho 2 đa thức − và nhỏ hơn 10 − 11 P (x)= x 2+ 2mx + m2và Q(x)= x 2+ (2m+1)x + m 2 Tìm m biết P (1) = Q (-1) Câu 4: Tìm các cặp số (x; y) biết: x y a / ; xy=84 = 3 7 1+3y 1+5y 1+7y b/ 12 5x 4x = = Câu 5: Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau : A = x +1+5 B = x 2 + 15 x 2 + 3 Câu 6: Cho tam giác ABC có Â < 900. Vẽ ra phía ngoài tam giác đó hai đoạn thẳng AD vuông góc và bằng AB; AE vuông góc và bằng AC. a. Chứng minh: DC = BE và DC ⊥BE b. Gọi N là trung điểm của DE. Trên tia đối của tia NA lấy M sao cho NA = NM. Chứng minh: AB = ME và ABC = EMA c. Chứng minh: MA Câu 1 ( 2 điểm) Thực hiện phép tính : ⊥BC ĐỀ SỐ 4: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) ⎡ ⎛ 1 ⎞ 2 ⎛ 1 ⎞ ⎤ 1 a 1 ) 6. ⎜ − ⎟ − − 3. ⎟ + 1 : ( − − ⎢ ⎢ ⎣ ⎝ 3 ⎠ ⎜ ⎝ 3 ⎠ ⎥ ⎥ ⎦ 3 2 3 2 ⎛ ⎞ ⎛ 3 ⎞ 2003 ⎜ 3 ⎟ − . ⎜ 4 ( ) ⎟ − . 1 b- ⎝ ⎠ ⎝ 2 ⎠ 2 3 ⎛ ⎞ ⎛ 5 ⎞ ⎜ ⎟ − . ⎝ 5 ⎠ ⎜ ⎝ 12 ⎟ ⎠ Câu 2 ( 2 điểm) 2 a alà số nguyên a- Tìm số nguyên a để + + 3 a + 1 b- Tìm số nguyên x,y sao cho x - 2xy + y = 0 Câu 3 ( 2 điểm) a a- Chứng minh rằng nếu a + c = 2b và 2bd = c (b+d) thì b c = với b,d khác 0 d b- Cần bao nhiêu số hạng của tổng S = 1+2+3+… để được một số có ba chữ số giống nhau . Câu 4 ( 3 điểm) Cho tam giác ABC có góc B bằng 450 , góc C bằng 1200. Trên tia đối của tia CB lấy điểm D sao cho CD = 2CB . Tính góc ADE Câu 5 ( 1điểm) Tìm mọi số nguyên tố thoả mãn : x2 - 2y2 =1 ĐÁP ÁN ĐỀ 1TOÁN 7 Bài 1. Tìm giá trị n nguyên dương: (4 điểm mỗi câu 2 điểm) a) 1.16 2 =; => 24n-3 = 2n => 4n – 3 = n => n = 1 n n 8 b) 27 < 3n < 243 => 33 < 3n < 35 => n = 4 Bài 2. Thực hiện phép tính: (4 điểm) 1 1 1 1 1 3 5 7 ... 49 ( ... ) + + + + − − − − − 4.9 9.14 14.19 44.49 89 1 1 1 1 1 1 1 1 1 2 (1 3 5 7 ... 49) ( ... ). = − + − + − + + − − + + + + + = 5 4 9 9 14 14 19 44 49 12 1 1 1 2 (12.50 25) 5.9.7.89 9 ( ). − + − = − = − 5 4 49 89 5.4.7.7.89 28 Bài 3. (4 điểm mỗi câu 2 điểm) a) Tìm x biết: 2x + 3 = x + 2 Ta có: x + 2 ≥0 => x ≥- 2. 3thì + Nếu x ≥ - 2 2x + 3 = x + 2=> 2x + 3 = x + 2 => x = - 1 (Thoả mãn) + Nếu - 2 ≤x < - 3Thì 2x + 3 = x + 2=> - 2x - 3 = x + 2 => x = - 2 5(Thoả mãn) 3 + Nếu - 2 > x Không có giá trị của x thoả mãn b) Tìm giá trị nhỏ nhất của A = x − 2006 + 2007− x Khi x thay đổi + Nếu x < 2006 thì: A = - x + 2006 + 2007 – x = - 2x + 4013 Khi đó: - x > -2006 => - 2x + 4013 > – 4012 + 4013 = 1 => A > 1 + Nếu 2006 ≤ x ≤ 2007 thì: A = x – 2006 + 2007 – x = 1 + Nếu x > 2007 thì A = x - 2006 - 2007 + x = 2x – 4013 Do x > 2007 => 2x – 4013 > 4014 – 4013 = 1 => A > 1. Vậy A đạt giá trị nhỏ nhất là 1 khi 2006 ≤ x ≤2007 Bài 4. Hiện nay hai kim đồng hồ chỉ 10 giờ. Sau ít nhất bao lâu thì 2 kim đồng hồ nằm đối diện nhau trên một đường thẳng. (4 điểm mỗi) Gọi x, y là số vòng quay của kim phút và kim giờ khi 10giờ đến lúc 2 kim đối nhau trên một đường thẳng, ta có: x – y = 1(ứng với từ số 12 đến số 4 trên đông hồ) 3 và x : y = 12 (Do kim phút quay nhanh gấp 12 lần kim giờ) x 12 x y x y Do đó: = => = = − 1 = = 1 ⇨ x = y 12 1 12 1 4 11 3 :11 33 => =(giờ) 33 (vòng ) x 11 Vậy thời gian ít nhất để 2 kim đồng hồ từ khi 10 giờ đến lúc nằm đối diện nhau trên một đường thẳng là 4giờ 11 Bài 5. Cho tam giác vuông ABC ( A = 1v), đường cao AH, trung tuyến AM. Trên tia đối tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho CI = CA, qua I vẽ đường thẳng song song với AC cắt đường thẳng AH tại E. Chứng minh: AE = BC (4 điểm mỗi) Đường thẳng AB cắt EI tại F E ΔABM = ΔDCM vì: AM = DM (gt), MB = MC (gt), F AMB = DMC (đđ) => BAM = CDM =>FB // ID => ID⊥AC I Và FAI = CIA (so le trong) (1) A IE // AC (gt) => FIA = CAI (so le trong) (2) Từ (1) và (2) => H C B M ΔCAI = ΔFIA (AI chung) => IC = AC = AF (3) và E FA = 1v (4) D Mặt khác EAF = BAH (đđ), BAH = ACB ( cùng phụ ABC) => EAF = ACB (5) Từ (3), (4) và (5) => =>AE = BC ĐÁP ÁN ĐỀ 2 TOÁN 7 Bài 1:(4 điểm): ΔAFE = ΔCAB a) (2 điểm) 10 5 6 2 10 3 5 2 12 5 1 4 10 3 4 .3 4 .9 5 .7 25 .49 2 .3 2 .3 5 .7 5 .7 − − − A−= − = −+ + + + 22 .3 8 .3 125.7 5 .14 2 .3 2 .3 5 .7 5 .2 .7 6 3 9 3 12 6 12 5 9 3 9 3 3 2 4 5 122 ( ) ( ) 2 .3 . 3 1 5 .7 . 1 7 − − 12 4 10 3 = − ( )( ) ( ) 2 .3 . 3 1 5 .7 . 1 2 12 5 9 3 3 + + ( ) 2 .3 .2 5 .7 . 6 12 4 10 3 = − − ( ) 2 .3 .4 5 .7 .9 12 5 9 3 1 10 7 = − = − 6 3 2 b) (2 điểm) 2 2 3 2 3 2 n n n n + + − + −= 2 2 3 3 2 2 n n n n + + + − − = 2 2 3 (3 1) 2 (2 1) n n + − + = 3 10 2 5 3 10 2 10 n n n n− 1 ⋅ − ⋅ = ⋅ − ⋅ = 10( 3n -2n) Vậy 2 2 3 2 3 2 n n n n + + − + −10 với mọi n là số nguyên dương. Bài 2:(4 điểm) 1 4 2 1 4 16 2 3,2 x x −− + = − + ⇔ − + = + a) (2 điểm)( ) 3 5 5 3 5 5 5 1 4 14 ⇔ − + = x 3 5 5 x− = ⎡ 1 2 x ⇔ − = ⇔ ⎢⎢⎢⎣ 12 − =− 31 2 3 x 3 1 7 23 31 5 23 3 = + =− =− + = x ⎡⎢⎢⎢⎣ ⇔ x b) (2 điểm) x x + + 1 11 x x − − − = 7 7 0 ( ) ( ) x + 1 10 ⇔ − − − = ⎡ ⎤ ⎣ ⎦ x x 7 1 7 0 ( ) ( ) ( 10 ⎤ ⇔ − − − = ⎡⎣ ⎦ x x+ 7 1 7 0 ( ))( )1 x x + 1 − = 7 0 ⎡ ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ x ⇔ ⎢ 1 ( 7) 0 − − = ⎢ 10 x ⎢⎣ x x − = ⇒ = 7 0 7 ⎡ ⇔ ⎢ ( 7) 1 8 x x − = ⇒ = 10 ⎣ Bài 3: (4 điểm) a) (2,5 điểm) Gọi a, b, c là ba số được chia ra từ số A. 2 3 1 Theo đề bài ta có: a : b : c = 5 4 6(1) : : và a2 +b2 +c2 = 24309 (2) 2 3 k a b c Từ (1) = = = k a k b k c = = = ; ; ⇒ ⇒ 2 3 1 5 4 6 5 4 6 ⇔ 2 4 9 1 ( ) 24309 Do đó (2) k + + = 25 16 36 ⇒k = 180 và k =−180 + Với k =180, ta được: a = 72; b = 135; c = 30. Khi đó ta có số A = a + b + c = 237. + Với k =−180, ta được: a = −72; b =−135; c =−30 Khi đó ta có só A =−72+( −135) + ( −30) = −237. b) (1,5 điểm) a c Từ =suy ra 2 c a b = . c b 2 2 2 a c a a b + + . khi đó = 2 2 2 b c b a b + + . a a b a ( ) + = = b a b b ( ) + Bài 4: (4 điểm) a/ (1điểm) Xét ΔAMCvà A ΔEMBcó : AM = EM (gt ) I AMC= EMB(đối đỉnh ) B M H C BM = MC (gt ) Nên : điểm ΔAMC= ΔEMB(c.g.c ) 0,5 K ⇒AC = EB E Vì ΔAMC= ΔEMB ⇒ MAC= MEB (2 góc có vị trí so le trong được tạo bởi đường thẳng AC và EB cắt đường thẳng AE ) Suy ra AC // BE . 0,5 điểm b/ (1 điểm ) Xét ΔAMIvà ΔEMKcó : AM = EM (gt ) MAI= MEK( vì Δ = Δ AMC EMB) AI = EK (gt ) Nên Δ = Δ AMI EMK( c.g.c ) Suy ra AMI= EMK Mà AMI+ IME= 180o ( tính chất hai góc kề bù ) ⇒ EMK+ IME= 180o ⇒Ba điểm I;M;K thẳng hàng c/ (1,5 điểm ) Trong tam giác vuông BHE ( H= 90o ) có HBE= 50o ⇒ HBE= 90o - HBE= 90o - 50o =40o ⇒ HEM= HEB - MEB= 40o - 25o = 15o A BMElà góc ngoài tại đỉnh M của ΔHEM Nên BME= HEM+ MHE= 15o + 90o = 105o 200 ( định lý góc ngoài của tam giác ) Bài 5: (4 điểm) M a) Chứng minh ΔADB = ΔADC (c.c.c) suy ra Do đó DAB DAC = 0 0 DAB = = 20 : 2 10 D b) ΔABC cân tại A, mà 0 A = 20(gt) nên 0 0 0 ABC = − = (180 20 ): 2 80 B C ΔABC đều nên 0 DBC = 60 Tia BD nằm giữa hai tia BA và BC suy ra 0 0 0 ABD = − = 80 60 20 . Tia BM là phân giác của góc ABD nên 0 ABM =10 Xét tam giác ABM và BAD có: AB cạnh chung ; 0 0 BAM ABD ABM DAB = = = = 20 ; 10 Vậy: ΔABM = ΔBAD (g.c.g) suy ra AM = BD, mà BD = BC (gt) nên AM = BC ĐÁP ÁN ĐỀ 3 TOÁN 7 Câu 1: Tìm tất cả các số nguyên a biết a 4 ≤ 0 ≤ a 4 ≤ => a= 0; 1; 2; 3 ; 4 * * * * * a= 0 => a = 0 a= 1 => a = 1 hoặc a = - 1 a= 2 => a = 2 hoặc a = - 2 a= 3 => a = 3 hoặc a = - 3 a= 4 => a = 4 hoặc a = - 4 Câu 2: Tìm phân số có tử là 7 biết nó lớn hơn 9 − và nhỏ hơn 911 − 10 Gọi mẫu phân số cần tìm là x Ta có: − − 9 7 9 < <=> 10 11 x => x = 8 63 63 63 − −=> -77 < 9x < -70. Vì 9x 9 => 9x = -72 < < 70 9 77 x Vậy phân số cần tìm là 78 − Câu 3. Cho 2 đa thức P (x)= x 2+ 2mx + m 2và Q (x)= x 2+ (2m+1)x + m2 Tìm m biết P (1) = Q (-1) P(1) = 12 + 2m.1 + m2 = m2 + 2m + 1 Q(-1) = 1 – 2m – 1 +m2 = m2 – 2m Để P(1) = Q(-1) thì m2 + 2m + 1 = m2 – 2m Câu 4: Tìm các cặp số (x; y) biết: ⇔4m = -1 ⇔m = -1/4 x y a / ; xy=84 = 3 7=> 2 2 84 4 x y xy = = = = 9 49 3.7 21 => x2 = 4.49 = 196 => x = ±14 => y2 = 4.4 = 16 => x = Do x,y cùng dấu nên: ∙ x = 6; y = 14 ∙ x = -6; y = -14 ±4 1+3y 1+5y 1+7y b/ 12 5x 4x = = áp dụng tính chất dãy tỉ số bằng nhau ta có: 1+3y 1+5y 1+7y 1 7y 1 5y 2y 1 5y 1 3y 2y + − − + − − = = = = = = 12 5x 4x 4x 5x x 5x 12 5x 12 − − − − 2 2 => y y = − −x x 5 12 => -x = 5x -12 => x = 2. Thay x = 2 vào trên ta được: 1 3 2 += = − y yy 12 2 − =>1+ 3y = -12y => 1 = -15y => y = − 1 15 Vậy x = 2, y = −thoả mãn đề bài 1 15 Câu 5: Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau : ∙ A = x +1+5 Ta có : ⇒A x +1 ≥0. Dấu = xảy ra ≥5. ⇔x= -1. Dấu = xảy ra ⇔x= -1. Vậy: Min A = 5 ⇔x= -1. ( ) 2 x= x 2 + + 3 12 ∙ B = + 15 = 1 + 12 x 2 + 3 x 2 + 3 2 x + 3 Ta có: x ≥0. Dấu = xảy ra 2 ⇔x = 0 ⇒x 2+ 3 ≥3 ( 2 vế dương ) ⇒ 3 12 2 x + ≤ 12 ⇒ 3 12 2 x + 3 ≤4 ⇒ 1+ 3 12 2 x + ≤ 1+ 4 ⇒B ≤5 Dấu = xảy ra ⇔x = 0 Vậy : Max B = 5 Câu 6: a/ ⇔x = 0. M Xét ADC và BAF ta có: P DA = BA(gt) AE = AC (gt) DAC = BAE ( cùng bằng 900 + BAC ) D 1 A E N 1 1 K 2 I => DAC = BAE(c.g.c ) => DC = BE Xét AIE và TIC I1 = I2 ( đđ) E1 = C1( do DAC = BAE) => EAI = CTI => CTI = 900 => DC ⊥BE b/ Ta có: MNE = AND (c.g.c) => D1 = MEN, AD = ME mà AD = AB ( gt) => AB = ME (đpcm) (1) Vì D1 = MEN => DA//ME => DAE + AEM = 1800 ( trong cùng phía ) mà BAC + DAE = 1800 => BAC = AEM ( 2 ) Ta lại có: AC = AE (gt) ( 3). Từ (1),(2) và (3) => ABC = EMA ( đpcm) c/ Kéo dài MA cắt BC tại H. Từ E hạ EP Xét AHC và EPA có: CAH = AEP ( do cùng phụ với gPAE ) AE = CA ( gt) ⊥MH PAE = HCA ( do ABC = EMA câu b) => AHC = EPA => EPA = AHC => AHC = 900 => MA ⊥BC (đpcm) ĐÁP ÁN ĐỀ 4 CÂU HƯỚNG DẪN CHẤM ĐIỂM 1.a Thực hiện theo từng bước đúng kết quả -2 cho điểm tối đa 1Điểm 1.b Thực hiện theo từng bước đúng kết quả 14,4 cho điểm tối đa 1Điểm 2.a 2 a a ( 1) 3 + + 3 Ta có : 13 a a= 1 + + = + a a + a + 1 a + 2 a alà số nguyên khi + + 3 3 vì a là số nguyên nên a +là số a + 1 1 nguyên hay a+1 là ước của 3 do đó ta có bảng sau : a+1 -3 1 1 3 a -4 -2 0 2 2 a alà số nguyên + + 3 Vậy với a ∈{− 4,−2,0,2}thì a + 1 0,25 0,25 0,25 0,25 2.b Từ : x-2xy+y=0 Hay (1-2y)(2x-1) = -1 Vì x,y là các số nguyên nên (1-2y)và (2x-1) là các số nguyên do đó ta có các trường hợp sau : 1 2 1 − = y x = 0 ⎧ ⎧ ⇒ ⎨ ⎨ 2 1 1 x − = − y = 0 ⎩ ⎩ 1 2 1 − = − y x = 1 ⎧ ⎧ Hoặc ⇒ ⎨ ⎨ 2 1 1 x − = y = 1 ⎩ ⎩ Vậy có 2 cặp số x, y như trên thoả mãn điều kiện đầu bài 0,25 0,25 0,25 0,25 3.a Vì a+c=2b nên từ 2bd = c (b+d) Ta có: (a+c)d=c(b+d) a c Hay ad=bc Suy ra =( ĐPCM) b d 0,5 0,5 3.b Giả sử số có 3 chữ số là aaa=111.a ( a là chữ số khác 0) Gọi số số hạng của tổng là n , ta có : n n ( 1) +Hay n(n+1) =2.3.37.a = = 111 3.37. a a 2 Vậy n(n+1) chia hết cho 37 , mà 37 là số nguyên tố và n+1<74 ( Nếu n = 74 không thoả mãn ) Do đó n=37 hoặc n+1 = 37 n n +không thoả mãn ( 1) Nếu n=37 thì n+1 = 38 lúc đó = 703 2 n n + ( 1) Nếu n+1=37 thì n = 36 lúc đó thoả mãn = 666 2 Vậy số số hạng của tổng là 36 0,25 0,25 0,5 4 A H B C D Kẻ DH Vuông góc với AC vì ACD =600 do đó CDH = 300 CD ⇒CH = BC Nên CH = 2 Tam giác BCH cân tại C ⇒CBH = 300 ⇒ABH = 150 Mà BAH = 150 nên tam giác AHB cân tại H Do đó tam giác AHD vuông cân tại H Vậy ADB = 450+300=750 0,5 0,5 1,0 1,0 5 Từ : x2-2y2=1suy ra x2-1=2y2 Nếu x chia hết cho 3 vì x nguyên tố nên x=3 lúc đó y= 2 nguyên tố thoả mãn Nếu x không chia hết cho 3 thì x2-1 chia hết cho 3 do đó 2y2 chia hết cho 3 Mà(2;3)=1 nên y chia hết cho 3 khi đó x2=19 không thoả mãn Vậy cặp số (x,y) duy nhất tìm được thoả mãn điều kiện đầu bài là (2;3) 0,25 0,25 0,25 0,25 ĐỀ SỐ 5: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1 (3đ): 1, Tính: P = 1 1 1 2 2 2 + − + − 2003 2004 2005 2002 2003 2004 − 5 5 5 3 3 3 + − + −2003 2004 2005 2002 2003 2004 2, Biết: 13 + 23 + . . . . . . .+ 103 = 3025. Tính: S = 23 + 43 + 63 + . . . .+ 203 3 2 2 x x xy 3 0,25 4 3, Cho: A = − + − 2 x y + Tính giá trị của A biết 1 x y =là số nguyên âm lớn nhất. ; 2 Bài 2 (1đ): Tìm x biết: 3x + 3x + 1 + 3x + 2 = 117 Bài 3 (1đ): Một con thỏ chạy trên một con đường mà hai phần ba con đường băng qua đồng cỏ và đoạn đường còn lại đi qua đầm lầy. Thời gian con thỏ chạy trên đồng cỏ bằng nửa thời gian chạy qua đầm lầy. Hỏi vận tốc của con thỏ trên đoạn đường nào lớn hơn ? Tính tỉ số vận tốc của con thỏ trên hai đoạn đường ? Bài 4 (2đ): Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng: 1, ∆ABE = ∆ADC 2, 0 BMC = 120 Bài 5 (3đ): Cho ba điểm B, H, C thẳng hàng, BC = 13 cm, BH = 4 cm, HC = 9 cm. Từ H vẽ tia Hx vuông góc với đường thẳng BC. Lấy A thuộc tia Hx sao cho HA = 6 cm. 1, ∆ABC là ∆ gì ? Chứng minh điều đó. 2, Trên tia HC lấy điểm D sao cho HD = HA. Từ D vẽ đường thẳng song song với AH cắt AC tại E. Chứng minh: AE = AB ĐỀ SỐ 6: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1 (4đ): Cho các đa thức: A(x) = 2x5 – 4x3 + x2 – 2x + 2 B(x) = x5 – 2x4 + x2 – 5x + 3 C(x) = x4 + 4x3 + 3x2 – 8x + 4 3 16 1, Tính M(x) = A(x) – 2B(x) + C(x) 2, Tính giá trị của M(x) khi x = − 0,25 3, Có giá trị nào của x để M(x) = 0 không ? Bài 2 (4đ): 1, Tìm ba số a, b, c biết: 3a = 2b; 5b = 7c và 3a + 5b – 7c = 60 2, Tìm x biết: 2 3 2 x x x − − = − Bài 3 (4đ): Tìm giá trị nguyên của m và n để biểu thức 1, P = 2 6 − mcó giá trị lớn nhất 2, Q = 83n − −có giá trị nguyên nhỏ nhất n Bài 4 (5đ): Cho tam giác ABC có AB < AC; AB = c, AC = b. Qua M là trung điểm của BC kẻ đường vuông góc với đường phân giác trong của góc A, cắt các đường thẳng AB, AC lần lượt tại D, E. 1, Chứng minh BD = CE. 2, Tính AD và BD theo b, c Bài 5 (3đ): Cho ∆ABC cân tại A, 0 BAC =100. D là điểm thuộc miền trong của ∆ABC sao cho 0 0 DBC DCB = = 10 , 20 . Tính góc ADB ? ĐỀ SỐ 7: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1 (3đ): Tính: 3 ⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ − − − ⎢ ⎥ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ − + − − 1, 1 1 1 6. 3. 1 1 3 3 3 ⎢ ⎥ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦ 2, (63 + 3. 62 + 33) : 13 3, 9 1 1 1 1 1 1 1 1 1 − − − − − − − − − 10 90 72 56 42 30 20 12 6 2 Bài 2 (3đ): 1, Cho a b c = =và a + b + c ≠ 0; a = 2005. b c a Tính b, c. 2, Chứng minh rằng từ hệ thức a b c d + + − −ta có hệ thức: = a b c d a c = b d Bài 3 (4đ): Độ dài ba cạnh của tam giác tỉ lệ với 2; 3; 4. Ba chiều cao tương ứng với ba cạnh đó tỉ lệ với ba số nào ? Bài 4 (3đ): Vẽ đồ thị hàm số: y = 2 ; 0 ⎧ ≥ x x ⎨⎩ < x x ; 0 Bài 5 (3đ): Chứng tỏ rằng: A = 75. (42004 + 42003 + . . . . . + 42 + 4 + 1) + 25 là số chia hết cho 100 Bài 6 (4đ): Cho tam giác ABC có góc A = 600. Tia phân giác của góc B cắt AC tại D, tia phân giác của góc C cắt AB tại E. Các tia phân giác đó cắt nhau tại I. Chứng minh: ID = IE ĐỀ SỐ 8: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1 (5đ): ∈N biết (33 : 9)3n = 729 1, Tìm n 2, Tính : 1 2 ⎛ ⎞ 4 2 2 − − 3 A = − + 3 5 7 ⎜ ⎟ + ⎜ ⎟ 9 2 ⎝ ⎠ Bài 2 (3đ): 0,(4) 2 3 4 − − 5 6 7 Cho a,b,c ∈R và a,b,c ≠0 thoả mãn b2 = ac. Chứng minh rằng: ca= Bài 3 (4đ): ( 2007 ) a b + ( 2007 ) b c + 2 2 Ba đội công nhân làm 3 công việc có khối lượng như nhau. Thời gian hoàn thành công việc của đội І, ІІ, ІІІ lần lượt là 3, 5, 6 ngày. Biêt đội ІІ nhiều hơn đội ІІІ là 2 người và năng suất của mỗi công nhân là bằng nhau. Hỏi mỗi đội có bao nhiêu công nhân ? Câu 4 (6đ): Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. 1, Chứng minh: BE = DC. 2, Gọi H là giao điểm của BE và CD. Tính số đo góc BHC. Bài 5 (2đ): Cho m, n ∈N và p là số nguyên tố thoả mãn: Chứng minh rằng : p2 = n + 2. ĐỀ SỐ 9: p= m −1 m + n. p ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1: (2 điểm) 4 2 A = + − + a, Cho .1,25) 31,64 (0,8.7 0.8 ).(1,25.7 5 (11,81 + 8,19).0,02 B = 9 :11,25 Trong hai số A và B số nào lớn hơn và lớn hơn bao nhiêu lần ? b) Số 1998 A = − có chia hết cho 3 không ? Có chia hết cho 9 không ? 10 4 Câu 2: (2 điểm) Trên quãng đường AB dài 31,5 km. An đi từ A đến B, Bình đi từ B đến A. Vận tốc An so với Bình là 2: 3. Đến lúc gặp nhau, thời gian An đi so với Bình đi là 3: 4. Tính quãng đường mỗi người đi tới lúc gặp nhau ? Câu 3: a) Cho ( )với a, b, c là các số hữu tỉ. 2 f x = ax + bx + c Chứng tỏ rằng: f (−2).f (3) ≤ 0. Biết rằng 13a + b + 2c = 0 b) Tìm giá trị nguyên của x để biểu thức A x Câu 4: (3 điểm) = 6 2 − có giá trị lớn nhất. Cho ΔABC dựng tam giác vuông cân BAE; BAE = 900, B và E nằm ở hai nửa mặt phẳng khác nhau bờ AC. Dựng tam giác vuông cân FAC, FAC = 900. F và C nằm ở hai nửa mặt phẳng khác nhau bờ AB. a) Chứng minh rằng: ΔABF = ΔACE b) FB ⊥ EC. Câu 5: (1 điểm) Tìm chữ số tận cùng của 8 1 9 0 9 1 6 9 5 9 A =19 + 2 ĐỀ SỐ 10: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Câu 1: (2 điểm) ⎛ ⎜ 1,5 1 0,75 3 0,375 0,3 − + + 3 ⎞ ⎟ a) Tính A = ⎜ ⎜ 2,5 + − 5 + 11 5 12 5 ⎟ ⎟ : 1890 2005 + 115 + − 1,25 − + − − b) Cho ⎜ ⎝ 1 3 1 1 1 0,625 0,5 1 11 1 12 ⎟ ⎠ B = + + + + + + ... 2 3 4 2004 2005 3 3 3 3 3 3 Chứng minh rằng Câu 2: (2 điểm) 1 B < . 2 5 3 a b + 5 3 c d a) Chứng minh rằng nếu dc a=thì b (giả thiết các tỉ số đều có nghĩa). 5 3 a b − + = 5 3 c d − x − x x x 1 − b) Tìm x biết: + − 2 − − 3 = 4 Câu 3: (2điểm) 2004 2003 2002 2001 a) Cho đa thức có giá trị nguyên. ( )với a, b, c là các số thực. Biết rằng f(0); f(1); f(2) 2 f x = ax + bx + c Chứng minh rằng 2a, 2b có giá trị nguyên. b) Độ dài 3 cạnh của tam giác tỉ lệ với 2; 3; 4. Ba đường cao tương ứng với ba cạnh đó tỉ lệ với ba số nào ? Câu 4: (3 điểm) Cho tam giác cân ABC (AB = AC0. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng: a) DM = EN b) Đường thẳng BC cắt MN tại trung điểm I của MN. c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC. Câu 5: (1 điểm) 7 8 ncó giá trị lớn nhất. Tìm số tự nhiên n để phân số − 2 3 n − ĐỀ SỐ 11: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Câu 1: (2 điểm) a) Tính: A = ⎛ 0,75 0,6 3 3 ⎞ ⎛ 11 11 ⎞ − + + 2,75 2,2 ⎟ + + − ⎜ ⎝ 7 13 ⎠ : ⎜ ⎝ 7 13 ⎟ ⎠ B = ⎛ ⎜ 10 1,21 + 22 0,25 ⎞ ⎟ 5 : ⎛ ⎜ + 225 ⎞ ⎟ ⎜ ⎝ 7 3 ⎟ ⎠ ⎜ ⎝ 49 9 ⎟ ⎠ b) Tìm các giá trị của x để: Câu 2: (2 điểm) x + 3 + x +1 = 3x a b c a) Cho a, b, c > 0 . Chứng tỏ rằng: =không là số nguyên. M a b + + b c + + c a + b) Cho a, b, c thoả mãn: a + b + c = 0. Chứng minh rằng: Câu 3: (2 điểm) ab + bc + ca ≤ 0. a) Tìm hai số dương khác nhau x, y biết rằng tổng, hiệu và tích của chúng lần lượt tỉ lệ nghịch với 35; 210 và 12. b) Vận tốc của máy bay, ô tô và tàu hoả tỉ lệ với các số 10; 2 và 1. Thời gian máy bay bay từ A đến B ít hơn thời gian ô tô chạy từ A đến B là 16 giờ. Hỏi tàu hoả chạy từ A đến B mất bao lâu ? Câu 4: (3 điểm) Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi ΔAPQ bằng 2. Chứng minh rằng góc PCQ bằng 450. Câu 5: (1 điểm) 1 1 1 1 9 Chứng minh rằng: + + + + < 5 15 25 ... 1985 20 ĐỀ SỐ 12: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1: (2 điểm) a) Chứng minh rằng với mọi số n nguyên dương đều có: A= 5 (5 +1) − 6 (3 + 2)  91 n n n n b) Tìm tất cả các số nguyên tố P sao cho Bài 2: ( 2 điểm) 14 2 P +là số nguyên tố. a) Tìm số nguyên n sao cho 2 n +  n − 3 1 bz cy − b) Biết −a = cx az − b = ay bx c a Chứng minh rằng: x Bài 3: (2 điểm) b = = y c z An và Bách có một số bưu ảnh, số bưu ảnh của mỗi người chưa đến 100. Số bưu ảnh hoa của An bằng số bưu ảnh thú rừng của Bách. + Bách nói với An. Nếu tôi cho bạn các bưu ảnh thú rừng của tôi thì số bưu ảnh của bạn gấp 7 lần số bưu ảnh của tôi. + An trả lời: còn nếu tôi cho bạn các bưu ảnh hoa của tôi thì số bưu ảnh của tôi gấp bốn lần số bưu ảnh của bạn. Tính số bưu ảnh của mỗi người. Bài 4: (3 điểm) Cho ΔABC có góc A bằng 1200 . Các đường phân giác AD, BE, CF . a) Chứng minh rằng DE là phân giác ngoài của ΔADB. b) Tính số đo góc EDF và góc BED. Bài 5: (1 điểm) Tìm các cặp số nguyên tố p, q thoả mãn: 2 2 2 2 p p 5 1997 5 q + = + ĐỀ SỐ 13: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1: (2 điểm) 1 5 5 ⎞ 1 3 ⎜⎝⎛− − ⎟ + Tính: 13 4 2 3 27 10 10 ⎞ 6 ⎜⎝⎛ ⎠ . 230 1 25 2 ⎟⎠⎞ 46 4 ⎜⎝⎛+ 1 ⎟ − Bài 2: (3 điểm) 10 3 ⎠ : 12 3 14 7 a) Chứng minh rằng: 38 33 A = 36 + 41 chia hết cho 77. b) Tìm các số nguyên x đểB = x −1 + x − 2 đạt giá trị nhỏ nhất. c) Chứng minh rằng: P(x) 3 2có giá trị nguyên với mọi x nguyên khi = ax +bx + cx + d và chỉ khi 6a, 2b, a + b + c và d là số nguyên. Bài 3: (2 điểm) a) Cho tỉ lệ thức a c =. Chứng minh rằng: b d ab 2 2 a b − ⎛ a b + ⎞ 2 2 2 a b + 2 2 cd = và c d − ⎜ ⎝ c d + ⎟ = ⎠ 2 2 c d + b) Tìm tất cả các số nguyên dương n sao cho: Bài 4: (2 điểm) n 2 −1 chia hết cho 7. Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi ΔAPQ bằng 2. Chứng minh rằng góc PCQ bằng 450. Bài 5: (1 điểm) Chứng minh rằng: Bài 1: (2 điểm) 3a + 2b 17 ⇔10a + b 17 (a, b ∈ Z ) ĐỀ SỐ 14: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) a) Tìm số nguyên dương a lớn nhất sao cho 2004! chia hết cho 7a. 1 1 1 1 + + + + b) Tính P = 2004 2 3 2003 4 ... 2002 2005 1 + + + + ... 1 2 3 Bài 2: (2 điểm) 2004 Cho x y z t + + = y z t x + + = z t x y + + = t x y z + + chứng minh rằng biểu thức sau có giá trị nguyên. P++ x y + y z + z t + t x y z = Bài 3: (2 điểm) z t + + t x + + x y + + Hai xe máy khởi hành cùng một lúc từ A và B, cách nhau 11 km để đi đến C. Vận tốc của người đi từ A là 20 km/h. Vận tốc của người đi từ B là 24 km/h. Tính quãng đường mỗi người đã đi. Biết họ đến C cùng một lúc và A, B, C thẳng hàng. Bài 4: (3 điểm) Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H ∈ BC). Vẽ AE ⊥ AB và AE = AB (E và C khác phía đối với AC). Kẻ EM và FN cùng vuông góc với đường thẳng AH (M, N ∈ AH). EF cắt AH ở O. Chứng minh rằng O là trung điểm của EF. Bài 5: (1 điểm) So sánh: 255 5 và 579 2 ĐỀ SỐ 15: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Câu 1: (2 điểm) 1 1 − + 1 512 B = 512 − − − − − Tính : 6 39 51 512 512 512 A = ; ... 1 8 Câu 2: (2 điểm) 1 − + 52 1 68 2 2 2 3 10 2 2 a) Tìm x, y nguyên biết: xy + 3x - y = 6 b) Tìm x, y, z biết: x z y = y = z = + + x y z (x, y, z ≠ 0) + +1 1 2 x z Câu 3: (2 điểm) + + x y + − a) Chứng minh rằng: Với n nguyên dương ta có: + + n n n n 2 2 S 3 2 3 2 = − + − chia hết cho 10. b) Tìm số tự nhiên x, y biết: Câu 4: (3 điểm) 2 2 7(x − 2004 ) = 23 − y Cho tam giác ABC, AK là trung tuyến. Trên nửa mặt phẳng không chứa B, bờ là AC, kẻ tia Ax vuông góc với AC; trên tia Ax lấy điểm M sao cho AM = AC. Trên nửa mặt phẳng không chứa C, bờ là AB, kẻ tia Ay vuông góc với AB và lấy điểm N thuộc Ay sao cho AN = AB. Lấy điểm P trên tia AK sao cho AK = KP. Chứng minh: a) AC // BP. b) AK ⊥ MN. Câu 5: (1 điểm) Cho a, b, c là số đo 3 cạnh của một tam giác vuông với c là số đo cạnh huyền. Chứng minh rằng: + ≤; n là số tự nhiên lớn hơn 0. 2 2 2 n n n a b c ĐỀ SỐ 16: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Câu 1: (2 điểm) Tính: + A = 8 3 9 . 5 1 4 16 3 19 . 5 1 4 : 7 ⎛ ⎜ ⎝ 14 2 17 − 2 1 34 ⎞ ⎟ ⎠ . 34 24 1 1 1 1 1 1 1 B = − − − − − − 3 8 Câu 2: ( 2, 5 điểm) 54 108 180 270 378 1) Tìm số nguyên m để: a) Giá trị của biểu thức m -1 chia hết cho giá trị của biểu thức 2m + 1. b) 3m −1 < 3 2) Chứng minh rằng: Câu 3: (2 điểm) a) Tìm x, y, z biết: + + n n n n 2 4 3 2 3 2 − + + chia hết cho 30 với mọi n nguyên dương. x y 2 3 =; y z = và 4 5 16 2 2 x − y = − b) Cho ( ). Biết f(0), f(1), f(2) đều là các số nguyên. 2 f x = ax + bx + c Chứng minh f(x) luôn nhận giá trị nguyên với mọi x nguyên. Câu 4: (2,5 điểm) Cho tam giác ABC có ba góc nhọn, đường cao AH. Ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH). a) Chứng minh: EM + HC = NH. b) Chứng minh: EN // FM. Câu 5: (1 điểm) Cho nlà số nguyên tố (n > 2). Chứng minh 2 +1 ĐỀ SỐ 17: nlà hợp số. 2 −1 ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Câu 1: (2 điểm) Tính nhanh: 1 1 1 1 ⎜⎝⎛ ⎞ (1 2 3 ... 99 100) + + + + + − − − ⎟ − 2 3 7 9 ⎠ (63.1,2 21.3,6) A = ⎜⎜⎝⎛− + 1 2 3 4 ... 99 100 − + − + + − ⎟⎟⎠⎞ B = 1 14 2 7 3 2 35 . ( − 4 15 ) ⎜⎜⎝⎛+ − ⎟⎟⎠⎞ 1 10 Câu 2: (2 điểm) 3 2 25 2 5 5. 7 a) Tính giá trị của biểu thức 2 A = x − x +với 3 2 1 x = 1 2 b) Tìm x nguyên để Câu 3: ( 2 điểm) x +1chia hết cho x − 3 3x y z a) Tìm x, y, z biết 3 3 = = và 2 2 2 2 2 1 8 64 216 x + y − z = b) Một ô tô phải đi từ A đến B trong thời gian dự định. Sau khi đi được nửa quãng đường ô tô tăng vận tốc lên 20 % do đó đến B sớm hơn dự định 15 phút. Tính thời gian ô tô đi từ A đến B. Câu 4: (3 điểm) Cho tam giác ABC, trung tuyến AM. Trên nửa mặt phẳng chứa đỉnh C bờ là đường thẳng AB dựng đoạn AE vuông góc với AB và AE = AB. Trên nửa mặt phẳng chứa đỉnh B bờ là đường thẳng AC dựng đoạn AF vuông góc với AC và AF = AC. Chứng minh rằng: a) FB = EC b) EF = 2 AM c) AM ⊥ EF. Câu 5: (1 điểm) Chứng tỏ rằng: 2001 1 1 1 1 1 1 1 1 1− + − + + − = + + + + 2 3 4 ... 99 200 101 102 ... 199 ĐỀ SỐ 18: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Câu 1: (2 điểm) a) Thực hiện phép tính: 0,4 M = 2 − + 9 7 2 11 7 − 1 3 1 − + 0,25 1 5 b) Tính tổng: 1 1 1,4 1 − + 9 1 11 1 1 1 6 − + 0,875 0,7 P = 1− − − − − − Câu 2: (2 điểm) 10 15 3 28 6 21 1) Tìm x biết: 2x + 3 − 2 4 − x = 5 2) Trên quãng đường Kép - Bắc giang dài 16,9 km, người thứ nhất đi từ Kép đến Bắc Giang, người thứ hai đi từ Bắc Giang đến Kép. Vận tốc người thứ nhất so với người thứ hai bằng 3: 4. Đến lúc gặp nhau vận tốc người thứ nhất đi so với người thứ hai đi là 2: 5. Hỏi khi gặp nhau thì họ cách Bắc Giang bao nhiêu km ? Câu 3: (2 điểm) a) Cho đa thức ( )(a, b, c nguyên). 2 f x = ax + bx + c CMR nếu f(x) chia hết cho 3 với mọi giá trị của x thì a, b, c đều chia hết cho 3. b) CMR: nếu Câu 4: (3 điểm) a b c =thì d 2 7 5 a ac + 2 7 5 a ac − = 2 7 5 b bd + 2 7 5 b bd − (Giả sử các tỉ số đều có nghĩa). Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC, từ M kẻ đường thẳng vuông góc với tia phân giác của góc A, cắt tia này tại N, cắt tia AB tại E và cắt tia AC tại F. Chứng minh rằng: a) AE = AF b) BE = CF c) AB AC AE + = Câu 5: (1 điểm) 2 Đội văn nghệ khối 7 gồm 10 bạn trong đó có 4 bạn nam, 6 bạn nữ. Để chào mừng ngày 30/4 cần 1 tiết mục văn nghệ có 2 bạn nam, 2 bạn nữ tham gia. Hỏi có nhiều nhất bao nhiêu cách lựa chọn để có 4 bạn như trên tham gia. ĐỀ SỐ 19: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Câu 1: (2 điểm) a) Tính giá trị của biểu thức: 11 1 3 ⎜⎝⎛ 2.31 ⎟⎠⎞ ⎥⎥⎥⎥⎦⎤ ⎢⎢⎢⎢⎣⎡⎟⎠⎞ . 4 31 7 − − 15 6 19 ⎜⎝⎛− 14 31 A = 5 1 ⎜⎝⎛ 1 ⎟⎠⎞ . 1 93 . 50 4 + − 6 b) Chứng tỏ rằng: 6 12 5 1 3 1 1 1 1 B = − − − − − > 1 2 2 2 2 ... 2 3 3 Câu 2: (2 điểm) 3 2 2004 2004 Cho phân số: x + C (x ∈ Z) = 4 5 x − a) Tìm x ∈ Z để C đạt giá trị lớn nhất, tìm giá trị lớn nhất đó. b) Tìm x ∈ Z để C là số tự nhiên. Câu 3: (2 điểm) Cho a c = . Chứng minh rằng: b d ab cd = ( ) a b + ( ) c d + 2 2 Câu 4: (3 điểm) Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D. a) Chứng minh rằng: BE = CD; AD = AE. b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ΔMAB; MAC là tam giác vuông cân. c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC. Câu 5: (1 điểm) Tìm số nguyên tố p sao cho: 3 1 p + ; 2 Câu 1: (2 điểm) p + là các số nguyên tố. 2 24 1 ĐỀ SỐ 20: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) a) Thực hiện phép tính: 0,75 0,6 3 3 − + + 7 13 A = ; 11 2,75 2,2 − + + 7 11 3 B = (−251.3+ 281) +3.251−(1− 281) b) Tìm các số nguyên tố x, y sao cho: 51x + 26y = 2000. Câu 2: ( 2 điểm) a) Chứng minh rằng: 2a - 5b + 6c bz cy −  17 nếu a - 11b + 3c  17 (a, b, c ∈ Z). − cx az − ay bx b) Biết c a = b = Chứng minh rằng: zc a= = b x y Câu 3: ( 2 điểm) Bây giờ là 4 giờ 10 phút. Hỏi sau ít nhất bao lâu thì hai kim đồng hồ nằm đối diện nhau trên một đường thẳng. Câu 4: (2 điểm) Cho ΔABC vuông cân tại A. Gọi D là điểm trên cạnh AC, BI là phân giác của ΔABD, đường cao IM của ΔBID cắt đường vuông góc với AC kẻ từ C tại N. Tính góc IBN ? Câu 5: (2 điểm) Số 2100 viết trong hệ thập phân tạo thành một số. Hỏi số đó có bao nhiêu chữ số ? ĐỀ SỐ 21: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1: (2 điểm) a) Tính giá trị của biểu thức 3 3 5 ⎟⎟⎟⎟⎠⎞ ⎜⎜⎜⎜⎝⎛+ − P 2005 : 0,375 0,3 − + + 11 12 2,5 . + − 3 1,25 =1,5 1 0,75 5 − + − − 5 0,625 0,5 b) Chứng minh rằng: 11 12 3 5 7 19 1 + + + + < ... 2 2 2 2 2 2 2 2 1 .2 Câu 2: (2 điểm) 2 .3 3 .4 9 .10 a) Chứng minh rằng với mỗi số nguyên dương n thì: n n n n 3 1 3 2 + + + + 3 3 2 2 + + + chia hết cho 6. b) Tìm giá trị nhỏ nhất của biểu thức: D = 2004− x + 2003− x Câu 3: (2 điểm) Một ô tô phải đi từ A đến B trong thời gian dự định. Sau khi đi được nửa quãng đường ô tô tăng vận tốc lên 20 % do đó đến B sớm hơn dự định 10 phút. Tính thời gian ô tô đi từ A đến B. Câu 4: (3 điểm) Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C có bờ AB, vẽ tia Ax vuông góc với AB, trên tia đó lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng không chứa B có bờ AC vẽ tia Ay vuông góc với AC. Trên tia đó lấy điểm E sao cho AE = AC. Chứng minh rằng: a) DE = 2 AM b) AM ⊥ DE. Câu 5: (1 điểm) Cho n số x1, x2, …, xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1. x2 + x2. x3 + …+ xn x1 = 0 thì n chia hết cho 4. ĐỀ SỐ 22: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1: (2 điểm) a) Tính giá trị của biểu thức: ⎛ 81,624 : 4 4 − ⎞ 2 3 ⎜ 3 4,505 125 ⎟ + 4 A = ⎧ ⎪ ⎡ ⎛ ⎝ 11 ⎞ 2 ⎤ 2 ⎠ 2 ⎫ ⎪ 13 ⎟ + : 0,88 3,53 (2,75) : ⎨ ⎪⎩ ⎢ ⎢ ⎣ ⎜ ⎝ 25 ⎠ ⎥ ⎥ ⎦ − ⎬ ⎪⎭ 25 b) Chứng minh rằng tổng: S 1 1 1 1 1 1 1 = − + − + − + + − < ... .... 0,2 2 4 6 4 2 4 2002 2004 Bài 2: (2 điểm) 2 2 2 2 n− n 2 2 2 a) Tìm các số nguyên x thoả mãn. 2005 = x − 4 + x −10 + x +101 + x + 990 + x +1000 b) Cho p > 3. Chứng minh rằng nếu các số p, p + d , p + 2d là các số nguyên tố thì d chia hết cho 6. Bài 3: (2 điểm) a) Để làm xong một công việc, một số công nhân cần làm trong một số ngày. Một bạn học sinh lập luận rằng nếu số công nhân tăng thêm 1/3 thì thời gian sẽ giảm đi 1/3. Điều đó đúng hay sai ? vì sao ? b) Cho dãy tỉ số bằng nhau: 2a b c d 2 2 + + + 2 + + + a a b + a b c d + + + = b b c = a b c d + + + c = a b c d d Tính M = c d + + + d a + c d + + a b + + d a + b c + Bài 4: (3 điểm) Cho tam giác nhọn ABC, AB > AC phân giác BD và CE cắt nhau tại I. a) Tính các góc của ΔDIE nếu góc A = 600. b) Gọi giao điểm của BD và CE với đường cao AH của ΔABC lần lượt là M và N. Chứng minh BM > MN + NC. Bài 5: (1 điểm) Cho z, y, z là các số dương. Chứng minh rằng: x + y + z ≤ 3 2 2 2 x y z + + z x y y z x + + + + 4 ĐỀ SỐ 23: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1: (2 điểm) a) Tìm x biết: 2 2 x + x − = x + 6 2 4 b) Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = 2 2004 2 2005 (3 − 4x + x ) . (3 + 4x + x ) Bài 2: (2 điểm) Ba đường cao của tam giác ABC có độ dài bằng 4; 12; x biết rằng x là một số tự nhiên. Tìm x ? Bài 3: (2 điểm) x y z t Cho x y z + +. y z t = z t x + + = t x y + + = + + CMR biểu thức sau có giá trị nguyên: P++ x y + = z t + y z + + t x + + z t + x y + + t x y z Bài 4: (3 điểm) Cho tam giác ABC vuông ở A có góc B = α. Trên cạnh AC lấy điểm E sao cho góc EBA= 1. Trên tia đối của tia EB lấy điểm D sao cho ED = BC. 3 α Chứng minh tam giác CED là tam giác cân. Bài 5: (1 điểm) Tìm các số a, b, c nguyên dương thoả mãn : b + + =và 3 2 a 3a 5 5 Bài 1: (2 điểm) c a +3 = 5 ĐỀ SỐ 24: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) a) Tính 2 3 4 2003 2004 A = 3−3 +3 −3 +...+3 −3 b) Tìm x biết Bài 2: (2 điểm) x −1 + x + 3 = 4 Chứng minh rằng: Nếu x a b c = y = z + 2 + 2 4 4 a b c Thì a x y z = + − b = a b c − + c x y z − + Bài 3: (2 điểm) + 2 + 2 4 4 x y z + − Hai xe máy khởi hành cùng một lúc từ A và B, cách nhau 11km để đi đến C (ba địa điểm A, B, C ở cùng trên một đường thẳng). Vận tốc của người đi từ A là 20 km/h. Vận tốc của người đi từ B là 24 km/h. Tính quãng đường mỗi người đã đi. Biết họ đến C cùng một lúc. Bài 4: (3 điểm) Cho tam giác ABC có góc A khác 900, góc B và C nhọn, đường cao AH. Vẽ các điểm D, E sao cho AB là trung trực của HD, AC là trung trực của HE. Gọi I, K lần lượt là giao điểm của DE với AB và AC. Tính số đo các góc AIC và AKB ? Bài 5: (1 điểm) Cho x = 2005. Tính giá trị của biểu thức: 2005 2004 2003 2002 2 x − x + x − x + − x + x − 2006 2006 2006 .... 2006 2006 1 ĐỀ SỐ 25: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Câu 1 . ( 2đ) Cho: a b c b = = . Chứng minh: ⎛ a b c + + ⎞ c 3 . d a ⎜ ⎝ b c d + + ⎟ = ⎠ d Câu 2. (1đ). Tìm A biết rằng: A = a c b +. b c = a b + = c a + Câu 3. (2đ). Tìm x ∈ Zđể A∈ Z và tìm giá trị đó. 1 2 − x. b). A = x. a). A = x + − 3 2 x + 3 Câu 4. (2đ). Tìm x: a) x − 3= 5 . b). ( x+ 2) 2 = 81. c). 5 x + 5 x+ 2 = 650 Câu 5. (3đ). Cho △ ABC vuông cân tại A, trung tuyến AM . E ∈ BC, BH,CK ⊥ AE, (H,K ∈ AE). Chứng minh △ MHK vuông cân. ĐỀ SỐ 26: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Câu 1: (2đ) Rút gọn A= 2 x x − 2 Câu 2 (2đ) x x + − 8 20 Ba lớp 7A,7B,7C có 94 học sinh tham gia trồng cây. Mỗi học sinh lớp 7A trồng được 3 cây, Mỗi học sinh lớp 7B trồng được 4 cây, Mỗi học sinh lớp 7C trồng được 5 cây,. Hỏi mỗi lớp có bao nhiêu học sinh. Biết rằng số cây mỗi lớp trồng được đều như nhau. Câu 3: (1,5đ) 2006 10 53 Chứng minh rằng Câu 4 : (3đ) +là một số tự nhiên. 9 Cho góc xAy = 600 vẽ tia phân giác Az của góc đó . Từ một điểm B trên Ax vẽ đường thẳng song song với với Ay cắt Az tại C. vẽ Bh ⊥ Ay,CM ⊥Ay, BK ⊥ AC.Chứng minh rằng . a, K là trung điểm của AC. b, BH = AC 2 c, KMC đều Câu 5 (1,5 đ) Trong một kỳ thi học sinh giỏi cấp Huyện, bốn bạn Nam, Bắc, Tây, Đông đoạt 4 giải 1,2,3,4 . Biết rằng mỗi câu trong 3 câu dưới đây đúng một nửa và sai 1 nửa: a, tây đạt giải 1, Bắc đạt giải 2. b, Tây đạt giải 2, Đông đạt giải 3. c, Nam đạt giải 2, Đông đạt giải 4. Em hãy xác định thứ tự đúng của giải cho các bạn. ĐỀ SỐ 27: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1: (3 điểm): Tính 1 1 2 2 3 18 (0,06: 7 3 .0,38) : 19 2 .4 ⎡ ⎤ ⎛ ⎞ ⎢ ⎥ − + − ⎜ ⎟ ⎣ ⎦ ⎝ ⎠ 6 2 5 3 4 Bài 2: (4 điểm): Cho a c =chứng minh rằng: c b a) 2 2 a c a += 2 2 b a b a − − +b) 2 2 = 2 2 b c b Bài 3:(4 điểm) Tìm a c a + xbiết: a) 1 x + − = −b) 15 3 6 1 − + = − x x 5 4 2 12 7 5 2 Bài 4: (3 điểm) Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5m/s, trên cạnh thứ ba với vận tốc 4m/s, trên cạnh thứ tư với vận tốc 3m/s. Hỏi độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên bốn cạnh là 59 giây Bài 5: (4 điểm) Cho tam giác ABC cân tại A có 0 A 20 =, vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh: e) Tia AD là phân giác của góc BAC f) AM = BC Bài 6: (2 điểm): Tìm x y, ∈biết: 2 2 25 8( 2009) − = − y x Bài 1. Tính --------------------------------------------------------- ĐỀ SỐ 28: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) 1 1 1 1 + + + + ... 1.6 6.11 11.16 96.101 Bài 2. Tìm giá trị nguyên dương của x và y, sao cho: 1 1 1 + = x y 5 Bài 3. Tìm hai số dương biết: tổng, hiệu và tích của chúng tỷ lệ nghịch với các số 20, 140 và 7 Bài 4. Tìm x, y thoả mãn: x 1 x 2 y 3 x 4 − + − + − + − = 3 Bài 5. Cho tam giác ABC có góc ABC = 500 ; góc BAC = 700 . Phân giác trong góc ACB cắt AB tại M. Trên MC lấy điểm N sao cho góc MBN = 400. Chứng minh: BN = MC. ĐỀ SỐ 29: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Câu 1: Tìm tất cả các số nguyên a biết a 4 ≤ Câu 2: Tìm phân số có tử là 7 biết nó lớn hơn 910 − và nhỏ hơn 911 − Câu 3: Trong 3 số x, y, z có 1 số dương , một số âm và một số 0. Hỏi mỗi số đó thuộc loại nào biết: 3 2 x y y z = − Câu 4: Tìm các cặp số (x; y) biết: x y a, ; xy=84 = 3 7 1+3y 1+5y 1+7y b, 12 5x 4x = = Câu 5: Tính tổng: 3 1 S 1 2 5 14 ... (n Z ) n 1 −+ = + + + + + ∈ * 2 Câu 6: Cho tam giác ABC có Â < 900. Vẽ ra phía ngói tam giác đó hai đoạn thẳng AD vuông góc và bằng AB; AE vuông góc và bằng AC. d. Chứng minh: DC = BE và DC ⊥BE e. Gọi N là trung điểm của DE. Trên tia đối của tia NA lấy M sao cho NA = NM. Chứng minh: AB = ME và ABC EMA = f. Chứng minh: MA Câu 1: So sánh các số: ⊥BC ĐỀ SỐ 30: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) a. 2 50 A 1 2 2 ... 2 = + + + + B =251 b. 2300 và 3200 Câu 2: Tìm ba số a, b, c biết a tỉ lệ thuận với 7 và 11; b và c tỉ lệ nghịch với 3 và 8 và 5a - 3b + 2c = 164 Câu 3: Tính nhanh: 1 1 1 761 4 5 3 4 ⋅ − ⋅ − + 417 762 139 762 417.762 139 Câu 4. Cho tam giác ACE đều sao cho B và E ở hai nửa mặt phẳng đối nhau có bờ AC. a. Chứng minh tam giác AED cân. b. Tính số đo góc ACD? TUYỂN TẬP CÁC ĐỀ THI HỌC SINH GIỎI LỚP 7 Một số kinh nghiệm nhỏ về tìm chử số tận cùng và ứng dụng vào các bài toán chứng minh chia hết của các lớp 6,7 I. phần mở đầu : Tìm chử số tận cùng của một luỷ thừa đây là những bài toán tương đối phức tạp của học sinh các lớp 6,7 nhưng lại là những bài toán hết sức lí thú , nó tạo cho học sinh lòng say mê khám phá từ đó các em ngày càng yeu môn toán hơn . có những bài có số mủ rất lớn tưởng như là mình không thể giãi được . Nhưng nhờ phát hiện và nắm bắt được qui luật , vận dungj qui luật đó các em tự giãi được và tự nhiên thấy mình làm được một việc vô cùng lớn lao . từ đó gieo vào trí tuệ các em khả năng khám phá , khả năng tự nghiên cứu Tuy là khó nhưng chúng ta hướng dẩn các em một cách từ từ có hệ thống ,lô rích và chặt chẻ thì các em vẩn tiếp fhu tốt . đây là một kinh nghiệm nhỏ mà tôi muốn trình bày và trao đổi cùng các bạn II. Nội dung cụ thể : 1. Lí thuyết về tìm chử số tận cùng : phần này rất quan trọng , cần lí giải cho học sinh một cách kỉ lưởng ,đầy đủ (X 0)n = (X1)n = (X 5)n = A0một số có tận cùng là 0 khi luỷ thừa bậc n có tận cùng vẩn là 0 B1một số có tận cùng là 1 khi luỷ thừa bậc n có tận cùng vẩn là 1 C5một số có tận cùng là 5 khi luỷ thừa bậc n có tận cùng vẩn là 5 (X 6)n = D6một số có tận cùng là 6 khi luỷ thừa bậc n có tận cùng vẩn là 6 X 5*a = F0 với a chẳn : một số có tận cùng là 5 khi nhân với mmột số chắn sẻ có chử số tận cùng là 0 x5*a = N5với a lẻ : một số có tận cùng là 5 khi nhân với một số lẻ sẻ có tận cùng là 5 Qua các công thức trên ta có quy tắc sau : Một số tưn nhiên có chử số tận cùng là : (0,1,5,6) khi nâng lên luỷ thừa với số mủ tự nhiên thì có chử số tự nhiên không thay đổi Kết luận trên là chìa khoá để giả các bài toán về tìm chử số tận cùng của một luỷ thừa 2. Các bài toán cơ bản . Bài toán 1 : Tìm chử số tận cùng của các luỷ thừa sau a) 2100 ; b) 3100 ; c) 4100 d) 5100 ; e) 6100 ; f) 7100 g) 8100 ; 9100 Ta nhận thấy các luỷ thừa 5100 , 6100 thuộc về dạng cơ bản đả trình bày ở trên nay còn lại các luỷ thừa mà cơ số là 2, 3 , 4 , 7 , 8 , 9 Muốn giãi các bài toán này thì ta phai đưa chúng về một trong 4 dạng cơ bản trên . thực chất chỉ có đưa về hai dạng cơ bản đó là : (X1)n = M1 , (X 6)n = N6 giải bài toán 1 a) 2100 = 24*25 = ( b) 3100 = 34*25 = ( c) 4100 = 44*50 =( (2)4)25 = (16)25 = (3)4)25 = (81)25 = (4)2)50 = (16)50 = A6 B1 C6 d) 7100 = 74*25 =( (7)4)25 = 240125 = D1 e) 8100 = 84*25 = ((8)4)25 = 409625 = E6 f) 9100 = 92*50 = ((9)2)50 = 8150 = F1 Bài toán 2 : tìm chử số tận cùng của các số sau : a) 2101 ; b) 3101 ; c) 41o1 , d) 7101 ; e) 8101 ; f) 9101 Giải bài toán 2 _ nhận xét đầu tiên . số mủ ( 101 không chia hết cho 2 và 4 ) _ Ta viết 101 = 4.25 +1 101 = 2 .50 +1 _ áp dụng công thức am+n = am.an ta có : a) 2101 = 24.25+1 = 2100 . 2 = Y6.2 = M2 b) 3101 = 3100+1 = 3100 . 3 = B1.3 = Y3 c) 41o1 = 4100 +1 = 4100 . 4 = C6. 4 = k4 d) 7101 = 7100+1 = 7100 . 7 = D1.7 = F7 e) 8101 = 8100+1 = 8100 . 8 = E6.8 = N8 f) 9101 = 9100 +1 = 9100 . 9 = F1. 9 = M9 3. Một số bài toán phức tạp hơn Bài toán 3: Tìm chử số tận cùng của các luỷ thừa sau : a) 12921997 ; b) 33331997 ; c) 12341997 ; d) 12371997 ; e) 12381997 ; f) 25691997 Bài giải Nhận xét quan trọng : Thực chất chử số tận cùng của luỷ thừa bậc n của mộtsố tự nhiên chỉ phụ thuộc vào chử số tận cùng của số tự nhiên đó mà thôi (cơ số) . Như vậy bài toá 3 thực chất là bài toán 2 a) 12921997 = 12924. 499 +1= (12924)499 .1292 = A6.1292 = M2 b) 33331997 = 33334. 499 +1 =(33334)499 +1 . 3333 = (B1)499 .3333 = D3 c) 12341997 = 12344 .499 +1 = (12344)499 . 1234 = ( C6)499 . 1234 = G4 d) 12371997 = 12374 .499 +1 = (12374) 499. 1237 = (D1).499 .1237 = X 7 4. vận dụng vào các bài toán chứng minh chia hết áp dụng dấu hiệu chia hết Ta dể dàng nhận thấy : Nếu hai số có chử số tận cùng giống nhau thì khi thực hiện phép trừ sẻ có chử số tận cùng là 0 ta sẻ có các bài toán chứng minh chia hết cho { 2,5,10 } . Nếu một số có tận cùng là 1 và một số có tận cùng là 3 chẳng hạn ta sẻ có bài toán chứng minh tổng hai số đó chia hết cho 2 (vì chử số tận cùng của tổng là 4) Các bài toán cụ thể : Hảy chứng minh a) 12921997 + 33331997 5 Theo bài toán trên ta có 12921997 = M2 33331997 = D3 như vậy tổng của hai số này sẻ có tận cùng là 5 ⇒12921997 + 33331997 5 b) Chứng minh 16281997 + 12921997 10 Ap dụng qui tắc tìm chử số tận cùng ta có 16281997 sẻ có tận cùng là M8 12921997 Sẻ Có tận cùng là N2 Như vậy 16281997 + 12921997 10 (vì chử số tận cùng của tổng này sẻ là 0) Ta củng có thể vận dung hiệu của hai số hoặc tích của hai số để ra các bài toán chứng minh tương tự III. Kết luận : Trên đây tôi đã trình bày phần cơ bản của vấn đề tìm chử số tận cùng của một luỷ thừa và những ứng dụng của nó trong bài toán chứng minh chia hết trong tập hợp số tự nhiên Trong những năm học qua tôi đã trực tiếp hướng dẩn cho một số học sinh các em tỏ ra rất thích thú và xem đó như là những khám phá mới của chính các em với cách đặt vấn đề như trên các em đã tự ra đề được và có nhiều bài rất hay ... Cách đặt vấn đề cung như trình bày nội chắc sẻ không tránh khỏi phần sai sót mong các đồng nghiệp góp ý chân thành ĐỀ THI Ô-LIM -PIC HUYỆN MÔN TOÁN LỚP 7 NĂM HỌC 2006-2007 (Thời gian làm bài 120 phút) Bài 1. Tìm giá trị n nguyên dương: a) 1.16 2 =; b) 27 < 3n < 243 n n 8 Bài 2. Thực hiện phép tính: 1 1 1 1 1 3 5 7 ... 49 ( ... ) + + + + − − − − − 4.9 9.14 14.19 44.49 89 Bài 3. a) Tìm x biết: 2x + 3 = x + 2 b) Tìm giá trị nhỏ nhất của A =x − 2006 + 2007− x Khi x thay đổi Bài 4. Hiện nay hai kim đồng hồ chỉ 10 giờ. Sau ít nhất bao lâu thì 2 kim đồng hồ nằm đối diện nhau trên một đường thẳng. Bài 5. Cho tam giác vuông ABC ( A = 1v), đường cao AH, trung tuyến AM. Trên tia đối tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho CI = CA, qua I vẽ đường thẳng song song với AC cắt đường thẳng AH tại E. Chứng minh: AE = BC ĐÁP ÁN TOÁN 7 Bài 1. Tìm giá trị n nguyên dương: (4 điểm mỗi câu 2 điểm) a) 1.16 2 =; => 24n-3 = 2n => 4n – 3 = n => n = 1 n n 8 b) 27 < 3n < 243 => 33 < 3n < 35 => n = 4 Bài 2. Thực hiện phép tính: (4 điểm) 1 1 1 1 1 3 5 7 ... 49 ( ... ) + + + + − − − − − 4.9 9.14 14.19 44.49 89 = 1 1 1 1 1 1 1 1 1 2 (1 3 5 7 ... 49) ( ... ). − + − + − + + − − + + + + + 5 4 9 9 14 14 19 44 49 12 = 1 1 1 2 (12.50 25) 5.9.7.89 9 ( ). − + − = − = − 5 4 49 89 5.4.7.7.89 28 Bài 3. (4 điểm mỗi câu 2 điểm) a) Tìm x biết: 2x + 3 = x + 2 Ta có: x + 2 ≥0 => x ≥- 2. + Nếu x ≥ - 23thì 2x + 3 = x + 2=> 2x + 3 = x + 2 => x = - 1 (Thoả mãn) + Nếu - 2 ≤x < - 23Thì 2x + 3 = x + 2=> - 2x - 3 = x + 2 => x = - 35(Thoả mãn) + Nếu - 2 > x Không có giá trị của x thoả mãn b) Tìm giá trị nhỏ nhất của A =x − 2006 + 2007− x Khi x thay đổi + Nếu x < 2006 thì: A = - x + 2006 + 2007 – x = - 2x + 4013 Khi đó: - x > -2006 => - 2x + 4013 > – 4012 + 4013 = 1 => A > 1 + Nếu 2006 ≤ x ≤ 2007 thì: A = x – 2006 + 2007 – x = 1 + Nếu x > 2007 thì A = x - 2006 - 2007 + x = 2x – 4013 Do x > 2007 => 2x – 4013 > 4014 – 4013 = 1 => A > 1. Vậy A đạt giá trị nhỏ nhất là 1 khi 2006 ≤ x ≤2007 Bài 4. Hiện nay hai kim đồng hồ chỉ 10 giờ. Sau ít nhất bao lâu thì 2 kim đồng hồ nằm đối diện nhau trên một đường thẳng. (4 điểm mỗi) Gọi x, y là số vòng quay của kim phút và kim giờ khi 10giờ đến lúc 2 kim đối nhau trên một đường thẳng, ta có: x – y = 31(ứng với từ số 12 đến số 4 trên đông hồ) và x : y = 12 (Do kim phút quay nhanh gấp 12 lần kim giờ) Do đó: 331 x= = 12 x y x y = => = = − 1 :11 y 1 12 1 11 3 => x = 114 12=> =(giờ) 33 (vòng ) x Vậy thời gian ít nhất để 2 kim đồng hồ từ khi 10 giờ đến lúc nằm đối diện nhau trên một đường thẳng là 114giờ Bài 5. Cho tam giác vuông ABC ( A = 1v), đường cao AH, trung tuyến AM. Trên tia đối tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho CI = CA, qua I vẽ đường thẳng song song với AC cắt đường thẳng AH tại E. Chứng minh: AE = BC (4 điểm mỗi) Đường thẳng AB cắt EI tại F E F ΔABM = ΔDCM vì: AM = DM (gt), MB = MC (gt), AMB = DMC (đđ) => BAM = CDM =>FB // ID => ID⊥AC I Và FAI = CIA (so le trong) (1) A IE // AC (gt) => FIA = CAI (so le trong) (2) Từ (1) và (2) => ΔCAI = ΔFIA (AI chung) B H M => IC = AC = AF (3) và E FA = 1v (4) D Mặt khác EAF = BAH (đđ), BAH = ACB ( cùng phụ ABC) => EAF = ACB (5) Từ (3), (4) và (5) => ΔAFE = ΔCAB =>AE = BC BÀI TẬP VỀ CÁC ĐẠI LƯỢNG TỈ LỆ 1. Ba đơn vị kinh doanh gúp vốn theo tỉ lệ 2 : 3 : 5. Hỏi mỗi đơn vị được chia bao nhiờu tiền nếu tổng số tiền lói là 350 000 000 đ và tiền lói được chia theo tỉ lệ thuận với số vốn đúng gúp. 2. Hai nền nhà hỡnh chữ nhật cú chiều dài bằng nhau. Nền nhà thứ nhất cú chiều rộng là 4 một, nền nhà thứ hai cú chiều rộng là 3,5 một. Để lỏt hết nền nhà thứ nhấtngười ta dựng 600 viờn gạch hoa hỡnh vuụng. Hỏi phải dựng bao nhiờu viờn gạch cựng loại để lỏt hết nền nhà thứ hai? 3. Khi tổng kết cuối năm học người ta thấy số học sinh giỏi của trường phõn bố ở cỏc khối 6,7,8,9theo tỉ lệ 1,5 : 1,1 : 1,3 : 1,2. Hỏi số học sinh giỏi của mỗi khối lớp, biết rằng khối 8 nhiều hơn khối 9 là 3 học sinh giỏi. 4. Ba đội mỏy san đất làm 3 khối lượng cụng việc như nhau. Đội thứ nhất, thứ hai, thứ ba hoàn thành cụng việc lần lượt trong 4 ngày, 6 ngày, 8 ngày. Hỏi mỗi đội cú mấy mỏy, biết rằng đội thứ nhất cú nhiều hơn đội thứ hai là 2 mỏy và năng suất cỏc mỏy như nhau. 5. Với thời gian để một người thợ lành nghề làm được 11 sản phẩm thỡ người thợ học nghề chỉ làm được 7 sản phẩm. Hỏi người thợ học việc phải dựng bao nhiờu thời gian để hoàn thành một khối lượng cụng việc mà người thợ lành nghề làm trong 56 giờ? 6. Một vật chuyển động trờn cỏc cạnh của một hỡnh vuụng. Trờn hai cạnh đầu vật chuyển động với vận tốc 5m/s, trờn cạnh thứ ba với vận tốc 4m/s, trờn cạnh thứ tư với vận tốc 3m/s. Hỏi độ dài của cạnh hỡnh vuụng biết rằng tổng số thời gian vật chuyển động trờn 4 cạnh là 59s. BÀI TẬP HÌNH HỌC 1. Cho 2 gúc xOzvà yOzkề bự. Ot và Ot’ lần lượt là phõn giỏc của hai gúc xOyvà yOztừ điểm M bất kỳ trờn Ot hạ MH ⊥Ox ( H ∈Ox ). Trờn tia Oz lấy điểm N sao cho ON = MH. Đường vuụng gúc kẻ từ N cắt tia Ot’ tại K. Tớnh số đo gúc KM^O ? 2. Cho tam giỏc ABC cú B^ = 300 , C^ = 200.Đường trung trực cựa AC cắt BC tại E cắt BA tại F.Chứng minh rằng : FA = FE. 3. Cho tam giỏc ABC tia phõn giỏc của gúc B và gúc C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC cắt AB ở D và AC ở E. Chứng minh rằng : DE = BD + EC. 4. Cho tam giỏc ABD cú B =2D. Kẻ AH vuụng gúc với BD (H ∈BD ) trờn tia đối của tia BA lấy BE = BH, đường thẳng EH cắt AD tại F. Chứng minh rằng : FH = FA = FD. 5. Cho tam giỏc cõn ABC (AB = AC) trờn tia đối của tia CA lấy điểm D bất kỳ . a) Chứng minh rằng : ABD= 2 CBD+ CDB . b) Giả sử 1. Tỡm x, y, biết : A= 300, ABD= 900, hãy tính góc CBD. MỘT SỐ BÀI TOÁN KHÓ a) (x – 1)2 + (y + 2)2 = 0 b) x + 2005+ y +1= 0 2. Trong một cuộc chạy đua tiếp sức 4 ×100m ( Mỗi đội tham gia gồm 4 vận động viờn, mỗi VĐV chạy xong 100m sẽ truyền gậy tiếp sức cho VĐV tiếp theo. Tổng số thời gian chạy của 4 VĐV là thành tớch của cả đội, thời gian chạy của đội nào càng ớt thỡ thành tớch càng cao ). Giả sử đội tuyển gồm : chú, mốo, gà, vịt cú vận tốc tỉ lệ với 10, 8, 4, 1. Hỏi thời gian chạy của đội tuyển là ? giõy. Biết rằng vịt chạy hết 80 giõy? x 3. Tỡm cỏc số nguyờn x, y thỏa món : 8 1 3 − = y 8 ĐỀ SỐ 31: Bài 1 (3đ): 1, Tính: P = ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) 1 1 1 2 2 2 + − + − 2003 2004 2005 2002 2003 2004 − 5 5 5 3 3 3 + − + − 2003 2004 2005 2002 2003 2004 2, Biết: 13 + 23 + . . . . . . .+ 103 = 3025. Tính: S = 23 + 43 + 63 + . . . .+ 203 3, Cho: A = 3 2 2 x x xy 3 0,25 4 − + − 2 x y + Tính giá trị của A biết 1;2 x y =là số nguyên âm lớn nhất. Bài 2 (1đ): Tìm x biết: 3x + 3x + 1 + 3x + 2 = 117 Bài 3 (1đ): Một con thỏ chạy trờn một con đường mà hai phần ba con đường băng qua đồng cỏ và đoạn đường cũn lại đi qua đầm lầy. Thời gian con thỏ chạy trờn đồng cỏ bằng nửa thời gian chạy qua đầm lầy. Hỏi vận tốc của con thỏ trờn đoạn đường nào lớn hơn ? Tớnh tỉ số vận tốc của con thỏ trờn hai đoạn đường ? Bài 4 (2đ): Cho ∆ABC nhọn. Vẽ về phớa ngoài ∆ABC cỏc ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng: 1, ∆ABE = ∆ADC 2, 0 BMC = 120 Bài 5 (3đ): Cho ba điểm B, H, C thẳng hàng, BC = 13 cm, BH = 4 cm, HC = 9 cm. Từ H vẽ tia Hx vuụng gúc với đường thẳng BC. Lấy A thuộc tia Hx sao cho HA = 6 cm. 1, ∆ABC là ∆ gỡ ? Chứng minh điều đú. 2, Trờn tia HC lấy điểm D sao cho HD = HA. Từ D vẽ đường thẳng song song với AH cắt AC tại E. Chứng minh: AE = AB ĐỀ SỐ 32 ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1 (4đ): Cho các đa thức: A(x) = 2x5 – 4x3 + x2 – 2x + 2 B(x) = x5 – 2x4 + x2 – 5x + 3 C(x) = x4 + 4x3 + 3x2 – 8x + 3 416 1, Tính M(x) = A(x) – 2B(x) + C(x) 2, Tính giá trị của M(x) khi x = − 0,25 3, Có giá trị nào của x để M(x) = 0 không ? Bài 2 (4đ): 1, Tìm ba số a, b, c biết: 3a = 2b; 5b = 7c và 3a + 5b – 7c = 60 2, Tìm x biết: 2 3 2 x x x − − = − Bài 3 (4đ): Tìm giá trị nguyên của m và n để biểu thức 1, P = 2 6 − mcó giá trị lớn nhất 2, Q = 83n − −có giá trị nguyên nhỏ nhất n Bài 4 (5đ): Cho tam giác ABC có AB < AC; AB = c, AC = b. Qua M là trung điểm của BC kẻ đường vuông góc với đường phân giác trong của góc A, cắt các đường thẳng AB, AC lần lượt tại D, E. 1, Chứng minh BD = CE. 2, Tính AD và BD theo b, c Bài 5 (3đ): Cho ∆ABC cân tại A, 0 BAC =100. D là điểm thuộc miền trong của ∆ABC sao cho 0 0 DBC DCB = = 10 , 20 . Tính góc ADB ? ĐỀ SỐ 33: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1 (3đ): Tính: 3 ⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ − − − ⎢ ⎥ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ − + − − 1, 1 1 1 6. 3. 1 1 3 3 3 ⎢ ⎥ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦ 2, (63 + 3. 62 + 33) : 13 3, 9 1 1 1 1 1 1 1 1 1 − − − − − − − − − 10 90 72 56 42 30 20 12 6 2 Bài 2 (3đ): 1, Cho a b c = =và a + b + c ≠ 0; a = 2005. b c a Tính b, c. 2, Chứng minh rằng từ hệ thức a b c d + + − −ta có hệ thức: = a b c d a c = b d Bài 3 (4đ): Độ dài ba cạnh của tam giác tỉ lệ với 2; 3; 4. Ba chiều cao tương ứng với ba cạnh đó tỉ lệ với ba số nào ? Bài 4 (3đ): Vẽ đồ thị hàm số: y = 2 ; 0 ⎧ ≥ x x ⎨⎩ < x x ; 0 Bài 5 (3đ): Chứng tỏ rằng: A = 75. (42004 + 42003 + . . . . . + 42 + 4 + 1) + 25 là số chia hết cho 100 Bài 6 (4đ): Cho tam giác ABC có góc A = 600. Tia phân giác của góc B cắt AC tại D, tia phân giác của góc C cắt AB tại E. Các tia phân giác đó cắt nhau tại I. Chứng minh: ID = IE ĐỀ SỐ 34: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1 (5đ): 1, Tìm n ∈N biết (33 : 9)3n = 729 2, Tính : 4 ⎜⎜⎝⎛ 2 ⎟⎟⎠⎞ 2 1 2 − − 3 A = Bài 2 (3đ): 9 − + 2 0,(4) + 3 2 3 5 4 − − 5 7 6 7 Cho a,b,c ∈R và a,b,c ≠0 thoả mãn b2 = ac. Chứng minh rằng: ca= 22 ( 2007 ) a b + ( 2007 ) b c + Bài 3 (4đ): Ba đội công nhân làm 3 công việc có khối lượng như nhau. Thời gian hoàn thành công việc của đội І, ІІ, ІІІ lần lượt là 3, 5, 6 ngày. Biêt đội ІІ nhiều hơn đội ІІІ là 2 người và năng suất của mỗi công nhân là bằng nhau. Hỏi mỗi đội có bao nhiêu công nhân ? Câu 4 (6đ): Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. 1, Chứng minh: BE = DC. 2, Gọi H là giao điểm của BE và CD. Tính số đo góc BHC. Bài 5 (2đ): p= p Cho m, n ∈N và p là số nguyên tố thoả mãn: m −1 Chứng minh rằng : p2 = n + 2. m + n. ĐỀ SỐ 35: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1: (2 điểm) 4 2 A = + − + a, Cho .1,25) 31,64 (0,8.7 0.8 ).(1,25.7 5 (11,81 + 8,19).0,02 B = 9 :11,25 Trong hai số A và B số nào lớn hơn và lớn hơn bao nhiêu lần ? b) Số10 4 1998 A = − có chia hết cho 3 không ? Có chia hết cho 9 không ? Câu 2: (2 điểm) Trên quãng đường AB dài 31,5 km. An đi từ A đến B, Bình đi từ B đến A. Vận tốc An so với Bình là 2: 3. Đến lúc gặp nhau, thời gian An đi so với Bình đi là 3: 4. Tính quãng đường mỗi người đi tới lúc gặp nhau ? Câu 3: a) Cho f x = ax + bx + c ( )với a, b, c là các số hữu tỉ. 2 Chứng tỏ rằng: f (−2).f (3) ≤ 0. Biết rằng 13a + b + 2c = 0 =62 có giá trị lớn nhất. b) Tìm giá trị nguyên của x để biểu thức x A− Câu 4: (3 điểm) Cho ΔABC dựng tam giác vuông cân BAE; BAE = 900, B và E nằm ở hai nửa mặt phẳng khác nhau bờ AC. Dựng tam giác vuông cân FAC, FAC = 900. F và C nằm ở hai nửa mặt phẳng khác nhau bờ AB. a) Chứng minh rằng: ΔABF = ΔACE b) FB ⊥ EC. Câu 5: (1 điểm) Tìm chữ số tận cùng của 09815 9 A =19 + 2 9691 ĐỀ SỐ 36: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút Câu 1: (2 điểm) 3 3 ⎟⎟⎟⎟⎠⎞ ⎜⎜⎜⎜⎝⎛− + − − 0,375 0,3 − + + 1,5 1 0,75+ + − 11 12 1890 a) Tính 115 A = 2,5 5 + − 3 1,25 + 5 0,625 0,5 11 5 12 : 2005 b) Cho 2 3 4 2004 2005 31 1 1 1 1 1 B = + + + + + + 3 3 3 3 ... 3 Chứng minh rằng 21 B < . Câu 2: (2 điểm) a) Chứng minh rằng nếu dc 5 3 a b + 5 3 c d + a=thì c d b (giả thiết các tỉ số đều có nghĩa). 5 3 a b − = 5 3 − b) Tìm x biết: 20014 x − x x x 1 − + − 2 − − 3 = Câu 3: (2điểm) 2004 2003 2002 a) Cho đa thức f x = ax + bx + c ( )với a, b, c là các số thực. Biết rằng f(0); f(1); f(2) 2 có giá trị nguyên. Chứng minh rằng 2a, 2b có giá trị nguyên. b) Độ dài 3 cạnh của tam giác tỉ lệ với 2; 3; 4. Ba đường cao tương ứng với ba cạnh đó tỉ lệ với ba số nào ? Câu 4: (3 điểm) Cho tam giác cân ABC (AB = AC0. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng: a) DM = EN b) Đường thẳng BC cắt MN tại trung điểm I của MN. c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC. Câu 5: (1 điểm) 7 8 ncó giá trị lớn nhất. − Tìm số tự nhiên n để phân số2 3 n − ĐỀ SỐ 37: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút Câu 1: (2 điểm) a) Tính: 3 3 11 11 A = ⎟⎠⎞ ⎜⎝⎛− + + 2,75 2,2 0,75 0,6 ⎞ ⎜⎝⎛ ⎟ + + − 7 13 ⎠ : 7 13 B = ⎟⎟⎠⎞ ⎜⎜⎝⎛+9225 10 1,21 7 22 0,25 3 ⎟⎟⎠⎞ : ⎜⎜⎝⎛+ 5 49 b) Tìm các giá trị của x để: x + 3 + x +1 = 3x Câu 2: (2 điểm) a b c a) Cho a, b, c > 0 . Chứng tỏ rằng: c a =không là số nguyên. M+ a b + + b c + + b) Cho a, b, c thoả mãn: a + b + c = 0. Chứng minh rằng: ab + bc + ca ≤ 0. Câu 3: (2 điểm) a) Tìm hai số dương khác nhau x, y biết rằng tổng, hiệu và tích của chúng lần lượt tỉ lệ nghịch với 35; 210 và 12. b) Vận tốc của máy bay, ô tô và tàu hoả tỉ lệ với các số 10; 2 và 1. Thời gian máy bay bay từ A đến B ít hơn thời gian ô tô chạy từ A đến B là 16 giờ. Hỏi tàu hoả chạy từ A đến B mất bao lâu ? Câu 4: (3 điểm) Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi ΔAPQ bằng 2. Chứng minh rằng góc PCQ bằng 450. Câu 5: (1 điểm) Chứng minh rằng: 209 1+ + + + < 5 1 15 1 25 ... 1 1985 ĐỀ SỐ 38: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút Bài 1: (2 điểm) a) Chứng minh rằng với mọi số n nguyên dương đều có: A= 5 (5 +1) − 6 (3 + 2)  91 n n n n b) Tìm tất cả các số nguyên tố P sao cho 14 2 P +là số nguyên tố. Bài 2: ( 2 điểm) a) Tìm số nguyên n sao cho 3 1 2 n +  n − bz cy − − cx az − ay bx b) Biết c a = b = Chứng minh rằng: zc a= = b x y Bài 3: (2 điểm) An và Bách có một số bưu ảnh, số bưu ảnh của mỗi người chưa đến 100. Số bưu ảnh hoa của An bằng số bưu ảnh thú rừng của Bách. + Bách nói với An. Nếu tôi cho bạn các bưu ảnh thú rừng của tôi thì số bưu ảnh của bạn gấp 7 lần số bưu ảnh của tôi. + An trả lời: còn nếu tôi cho bạn các bưu ảnh hoa của tôi thì số bưu ảnh của tôi gấp bốn lần số bưu ảnh của bạn. Tính số bưu ảnh của mỗi người. Bài 4: (3 điểm) Cho ΔABC có góc A bằng 1200 . Các đường phân giác AD, BE, CF . a) Chứng minh rằng DE là phân giác ngoài của ΔADB. b) Tính số đo góc EDF và góc BED. Bài 5: (1 điểm) Tìm các cặp số nguyên tố p, q thoả mãn: 2 2 2 2 p p 5 1997 5 q + = + ĐỀ SỐ 39: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút Bài 1: (2 điểm) 1 5 5 ⎞ 1 3 ⎜⎝⎛− − 2 10 ⎟ + Tính: 13 4 3 27 10 ⎞ 6 ⎜⎝⎛ ⎠ . 230 1 25 2 ⎟⎠⎞ 46 4 ⎜⎝⎛+ 1 ⎟ − Bài 2: (3 điểm) 10 3 ⎠ : 12 3 14 7 a) Chứng minh rằng: 38 33 A = 36 + 41 chia hết cho 77. b) Tìm các số nguyên x đểB = x −1 + x − 2 đạt giá trị nhỏ nhất. c) Chứng minh rằng: P(x)= ax +bx + cx + d 3 2có giá trị nguyên với mọi x nguyên khi và chỉ khi 6a, 2b, a + b + c và d là số nguyên. Bài 3: (2 điểm) a) Cho tỉ lệ thức dc a=. Chứng minh rằng: b ab 2 2 a b − ⎜⎝⎛++ a b ⎞ 2 2 2 a b + 2 2 = và 2 2 cd c d − c d ⎟ = ⎠ c d + b) Tìm tất cả các số nguyên dương n sao cho: 2 −1 n chia hết cho 7. Bài 4: (2 điểm) Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi ΔAPQ bằng 2. Chứng minh rằng góc PCQ bằng 450. Bài 5: (1 điểm) Chứng minh rằng: 3a + 2b 17 ⇔10a + b 17 (a, b ∈ Z ) ĐỀ SỐ 40: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1: (2 điểm) a) Tìm số nguyên dương a lớn nhất sao cho 2004! chia hết cho 7a. 1 1 1 1 + + + + b) Tính P = 2004 2 3 2003 4 ... 2002 2005 1 + + + + ... 1 2 3 Bài 2: (2 điểm) x y z 2004 t Cho x y z y z t + + = z t x + + = t x y + + = + + chứng minh rằng biểu thức sau có giá trị nguyên. P++ x y + y z + z t + t x y z = Bài 3: (2 điểm) z t + + t x + + x y + + Hai xe máy khởi hành cùng một lúc từ A và B, cách nhau 11 km để đi đến C. Vận tốc của người đi từ A là 20 km/h. Vận tốc của người đi từ B là 24 km/h. Tính quãng đường mỗi người đã đi. Biết họ đến C cùng một lúc và A, B, C thẳng hàng. Bài 4: (3 điểm) Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H ∈ BC). Vẽ AE ⊥ AB và AE = AB (E và C khác phía đối với AC). Kẻ EM và FN cùng vuông góc với đường thẳng AH (M, N ∈ AH). EF cắt AH ở O. Chứng minh rằng O là trung điểm của EF. Bài 5: (1 điểm) So sánh: 255 5 và 579 2 ĐỀ SỐ 41: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Câu 1: (2 điểm) 1 1 − + 1 A = ; 2 3 10 2512 512 B = 512 − − − − − Tính : Câu 2: (2 điểm) 6 1 8 39 1 − + 52 51 1 68 2 512 2 512 2 ... a) Tìm x, y nguyên biết: xy + 3x - y = 6 x= + + y z b) Tìm x, y, z biết: x y z + +1 1 2 (x, y, z ≠ 0) Câu 3: (2 điểm) z y = x z + + = x y + − a) Chứng minh rằng: Với n nguyên dương ta có: n n n n + + chia hết cho 10. 2 2 S 3 2 3 2 = − + − b) Tìm số tự nhiên x, y biết: 2 2 7(x − 2004 ) = 23 − y Câu 4: (3 điểm) Cho tam giác ABC, AK là trung tuyến. Trên nửa mặt phẳng không chứa B, bờ là AC, kẻ tia Ax vuông góc với AC; trên tia Ax lấy điểm M sao cho AM = AC. Trên nửa mặt phẳng không chứa C, bờ là AB, kẻ tia Ay vuông góc với AB và lấy điểm N thuộc Ay sao cho AN = AB. Lấy điểm P trên tia AK sao cho AK = KP. Chứng minh: a) AC // BP. b) AK ⊥ MN. Câu 5: (1 điểm) Cho a, b, c là số đo 3 cạnh của một tam giác vuông với c là số đo cạnh huyền. Chứng minh rằng: + ≤; n là số tự nhiên lớn hơn 0. 2 2 2 n n n a b c ĐỀ SỐ 42: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Câu 1: (2 điểm) Tính: + A = 8 3 9 . 5 1 4 16 3 19 . 5 1 4 : 7 14 2 ⎜⎝⎛− 17 1 2 34 ⎟⎠⎞ . 34 24 1 1 1 1 1 1 1 B = − − − − − − 3 8 Câu 2: ( 2, 5 điểm) 54 108 180 270 378 1) Tìm số nguyên m để: a) Giá trị của biểu thức m -1 chia hết cho giá trị của biểu thức 2m + 1. b) 3m −1 < 3 2) Chứng minh rằng: n n n n + + chia hết cho 30 với mọi n nguyên dương. 2 4 3 2 3 2 − + + Câu 3: (2 điểm) a) Tìm x, y, z biết: x y 2 3 y z =; 4 5 = và 16 2 2 x − y = − b) Cho f x = ax + bx + c ( ). Biết f(0), f(1), f(2) đều là các số nguyên. 2 Chứng minh f(x) luôn nhận giá trị nguyên với mọi x nguyên. Câu 4: (2,5 điểm) Cho tam giác ABC có ba góc nhọn, đường cao AH. Ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH). a) Chứng minh: EM + HC = NH. b) Chứng minh: EN // FM. Câu 5: (1 điểm) Cho 2 +1 nlà số nguyên tố (n > 2). Chứng minh 2 −1 nlà hợp số. ĐỀ SỐ 43: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Câu 1: (2 điểm) Tính nhanh: 1 1 1 1 ⎜⎝⎛ ⎞ (1 2 3 ... 99 100) + + + + + − − − ⎟ − 2 3 7 9 ⎠ (63.1,2 21.3,6) A = ⎜⎜⎝⎛− + 1 2 3 4 ... 99 100 − + − + + − ⎟⎟⎠⎞ B = 1 14 2 7 3 2 35 . ( − 4 15 ) ⎜⎜⎝⎛+ − ⎟⎟⎠⎞ 1 10 Câu 2: (2 điểm) 3 2 25 2 5 5. 7 2 A = x − x +với 21 a) Tính giá trị của biểu thức 3 2 1 b) Tìm x nguyên đểx +1chia hết cho x − 3 Câu 3: ( 2 điểm) 3x y z x = 3 3 a) Tìm x, y, z biết 216 = = và 2 2 1 2 2 2 8 64 x + y − z = b) Một ô tô phải đi từ A đến B trong thời gian dự định. Sau khi đi được nửa quãng đường ô tô tăng vận tốc lên 20 % do đó đến B sớm hơn dự định 15 phút. Tính thời gian ô tô đi từ A đến B. Câu 4: (3 điểm) Cho tam giác ABC, trung tuyến AM. Trên nửa mặt phẳng chứa đỉnh C bờ là đường thẳng AB dựng đoạn AE vuông góc với AB và AE = AB. Trên nửa mặt phẳng chứa đỉnh B bờ là đường thẳng AC dựng đoạn AF vuông góc với AC và AF = AC. Chứng minh rằng: a) FB = EC b) EF = 2 AM c) AM ⊥ EF. Câu 5: (1 điểm) Chứng tỏ rằng: 2001 1 1 1 1 1 1 1 1 1− + − + + − = + + + + 2 3 4 ... 99 200 101 102 ... 199 ĐỀ SỐ 44: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Câu 1: (2 điểm) a) Thực hiện phép tính: 0,4 M = 2 − + 9 7 2 11 7 − 1 3 11 − + 0,25 1 5 1,4 − + 9 11 6 − + 0,875 0,7 b) Tính tổng: 211 1 1 1 1 1 P = 1− − − − − − Câu 2: (2 điểm) 10 15 3 28 6 1) Tìm x biết: 2x + 3 − 2 4 − x = 5 2) Trên quãng đường Kép - Bắc giang dài 16,9 km, người thứ nhất đi từ Kép đến Bắc Giang, người thứ hai đi từ Bắc Giang đến Kép. Vận tốc người thứ nhất so với người thứ hai bằng 3: 4. Đến lúc gặp nhau vận tốc người thứ nhất đi so với người thứ hai đi là 2: 5. Hỏi khi gặp nhau thì họ cách Bắc Giang bao nhiêu km ? Câu 3: (2 điểm) a) Cho đa thức f x = ax + bx + c ( )(a, b, c nguyên). 2 CMR nếu f(x) chia hết cho 3 với mọi giá trị của x thì a, b, c đều chia hết cho 3. 2 7 5 a ac 2 b) CMR: nếu dc + (Giả sử các tỉ số đều có nghĩa). 7 5 b bd + a=thì b bd b Câu 4: (3 điểm) 2 7 5 a ac − = 2 7 5 − Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC, từ M kẻ đường thẳng vuông góc với tia phân giác của góc A, cắt tia này tại N, cắt tia AB tại E và cắt tia AC tại F. Chứng minh rằng: a) AE = AF b) BE = CF AB AC AE + c) 2 = Câu 5: (1 điểm) Đội văn nghệ khối 7 gồm 10 bạn trong đó có 4 bạn nam, 6 bạn nữ. Để chào mừng ngày 30/4 cần 1 tiết mục văn nghệ có 2 bạn nam, 2 bạn nữ tham gia. Hỏi có nhiều nhất bao nhiêu cách lựa chọn để có 4 bạn như trên tham gia. ĐỀ SỐ 45: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Câu 1: (2 điểm) a) Tính giá trị của biểu thức: 11 1 3 ⎜⎝⎛ 2.31 ⎟⎠⎞ ⎥⎥⎥⎥⎦⎤ ⎢⎢⎢⎢⎣⎡⎟⎠⎞ . 4 31 7 − − 15 6 19 ⎜⎝⎛− 14 31 A = 5 1 ⎜⎝⎛ 1 ⎟⎠⎞ . 1 93 . 50 4 + − 6 6 12 5 3 b) Chứng tỏ rằng:20041 1 1 1 1 B = − − − − − > 1 2 2 2 2 ... 2 3 3 Câu 2: (2 điểm) =xx 3 2 + 2004 Cho phân số: 4 5 C (x ∈ Z) − a) Tìm x ∈ Z để C đạt giá trị lớn nhất, tìm giá trị lớn nhất đó. b) Tìm x ∈ Z để C là số tự nhiên. Câu 3: (2 điểm) a= . Chứng minh rằng: 22 Cho dc b Câu 4: (3 điểm) ab cd = ( ) a b + ( ) c d + Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D. a) Chứng minh rằng: BE = CD; AD = AE. b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ΔMAB; MAC là tam giác vuông cân. c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC. Câu 5: (1 điểm) Tìm số nguyên tố p sao cho: 3 1 p + ; 24 1 p + là các số nguyên tố. 2 2 ĐỀ SỐ 46: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Câu 1: (2 điểm) a) Thực hiện phép tính: 0,75 0,6 3 3 − + + 7 13 A = ; 11 2,75 2,2 − + + 7 11 3 B = (−251.3+ 281) +3.251−(1− 281) b) Tìm các số nguyên tố x, y sao cho: 51x + 26y = 2000. Câu 2: ( 2 điểm) a) Chứng minh rằng: 2a - 5b + 6c  17 nếu a - 11b + 3c  17 (a, b, c ∈ Z). bz cy − − cx az − ay bx b) Biết c a = b = Chứng minh rằng: zc a= = b x y Câu 3: ( 2 điểm) Bây giờ là 4 giờ 10 phút. Hỏi sau ít nhất bao lâu thì hai kim đồng hồ nằm đối diện nhau trên một đường thẳng. Câu 4: (2 điểm) Cho ΔABC vuông cân tại A. Gọi D là điểm trên cạnh AC, BI là phân giác của ΔABD, đường cao IM của ΔBID cắt đường vuông góc với AC kẻ từ C tại N. Tính góc IBN ? Câu 5: (2 điểm) Số 2100 viết trong hệ thập phân tạo thành một số. Hỏi số đó có bao nhiêu chữ số ? ĐỀ SỐ 47: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1: (2 điểm) a) Tính giá trị của biểu thức 3 3 5 ⎟⎟⎟⎟⎠⎞ ⎜⎜⎜⎜⎝⎛+ − P 2005 : 0,375 0,3 − + + 11 12 2,5 . + − 3 1,25 =1,5 1 0,75 5 − + − − 5 0,625 0,5 b) Chứng minh rằng: 11 12 3 5 7 19 1 + + + + < ... 2 2 2 2 2 2 2 2 1 .2 Câu 2: (2 điểm) 2 .3 3 .4 9 .10 a) Chứng minh rằng với mỗi số nguyên dương n thì: 3 1 3 2 n n n n chia hết cho 6. + + + + 3 3 2 2 + + + b) Tìm giá trị nhỏ nhất của biểu thức: D = 2004− x + 2003− x Câu 3: (2 điểm) Một ô tô phải đi từ A đến B trong thời gian dự định. Sau khi đi được nửa quãng đường ô tô tăng vận tốc lên 20 % do đó đến B sớm hơn dự định 10 phút. Tính thời gian ô tô đi từ A đến B. Câu 4: (3 điểm) Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C có bờ AB, vẽ tia Ax vuông góc với AB, trên tia đó lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng không chứa B có bờ AC vẽ tia Ay vuông góc với AC. Trên tia đó lấy điểm E sao cho AE = AC. Chứng minh rằng: a) DE = 2 AM b) AM ⊥ DE. Câu 5: (1 điểm) Cho n số x1, x2, …, xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1. x2 + x2. x3 + …+ xn x1 = 0 thì n chia hết cho 4. ĐỀ SỐ 48: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1: (2 điểm) a) Tính giá trị của biểu thức: 2 4 3 ⎞ ⎜⎝⎛− 81,624 : 4 3 4,505 125 ⎟ + 4 A = 2 ⎥⎥⎦⎤ 2 ⎠ ⎪⎬⎫ ⎪⎨⎧− ⎜⎝⎛ 11 ⎞ 13 ⎢⎢⎣⎡⎟ + 2 ⎪⎩ 25 : 0,88 3,53 (2,75) : ⎠ ⎪⎭ 25 b) Chứng minh rằng tổng: 12 4 6 4 2 4 2002 2004 S 1 1 1 1 1 1 = − + − + − + + − < Bài 2: (2 điểm) 2 2 2 ... 2 n− n 2 .... 2 0,2 2 a) Tìm các số nguyên x thoả mãn. 2005 = x − 4 + x −10 + x +101 + x + 990 + x +1000 b) Cho p > 3. Chứng minh rằng nếu các số p, p + d , p + 2d là các số nguyên tố thì d chia hết cho 6. Bài 3: (2 điểm) a) Để làm xong một công việc, một số công nhân cần làm trong một số ngày. Một bạn học sinh lập luận rằng nếu số công nhân tăng thêm 1/3 thì thời gian sẽ giảm đi 1/3. Điều đó đúng hay sai ? vì sao ? b) Cho dãy tỉ số bằng nhau: 2a b c d 2 2 + + + 2 + + + a a b c d + + + = b = a b c d + + + c = a b c d d M++ a b + b c + c d + d a Tính b c = Bài 4: (3 điểm) c d + + d a + + a b + + Cho tam giác nhọn ABC, AB > AC phân giác BD và CE cắt nhau tại I. a) Tính các góc của ΔDIE nếu góc A = 600. b) Gọi giao điểm của BD và CE với đường cao AH của ΔABC lần lượt là M và N. Chứng minh BM > MN + NC. Bài 5: (1 điểm) Cho z, y, z là các số dương. Chứng minh rằng: 43 x y z 2 2 2≤ x y z + + + + z x y y z x + + + + ĐỀ SỐ 49: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1: (2 điểm) a) Tìm x biết: 6 2 4 2 2 x + x − = x + b) Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = 2 2004 2 2005 (3 − 4x + x ) . (3 + 4x + x ) Bài 2: (2 điểm) Ba đường cao của tam giác ABC có độ dài bằng 4; 12; x biết rằng x là một số tự nhiên. Tìm x ? Bài 3: (2 điểm) x y z t Cho x y z + +. y z t = z t x + + = t x y + + = + + CMR biểu thức sau có giá trị nguyên: P++ x y + = z t + y z + + t x + + z t + x y + + t x y z Bài 4: (3 điểm) Cho tam giác ABC vuông ở A có góc B = α. Trên cạnh AC lấy điểm E sao cho góc EBA= 1. Trên tia đối của tia EB lấy điểm D sao cho ED = BC. 3 α Chứng minh tam giác CED là tam giác cân. Bài 5: (1 điểm) Tìm các số a, b, c nguyên dương thoả mãn : b + + =và c 3 2 a 3a 5 5 a +3 = 5 ĐỀ SỐ 40: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1: (2 điểm) a) Tính 2 3 4 2003 2004 A = 3−3 +3 −3 +...+3 −3 b) Tìm x biết x −1 + x + 3 = 4 Bài 2: (2 điểm) Chứng minh rằng: x y z Nếu a b c a b c = = + 2 + 2 4 4 a b c a + − b − + c Thì x y z x y z = = + 2 + 2 4 4 x y z Bài 3: (2 điểm) + − − + Hai xe máy khởi hành cùng một lúc từ A và B, cách nhau 11km để đi đến C (ba địa điểm A, B, C ở cùng trên một đường thẳng). Vận tốc của người đi từ A là 20 km/h. Vận tốc của người đi từ B là 24 km/h. Tính quãng đường mỗi người đã đi. Biết họ đến C cùng một lúc. Bài 4: (3 điểm) Cho tam giác ABC có góc A khác 900, góc B và C nhọn, đường cao AH. Vẽ các điểm D, E sao cho AB là trung trực của HD, AC là trung trực của HE. Gọi I, K lần lượt là giao điểm của DE với AB và AC. Tính số đo các góc AIC và AKB ? Bài 5: (1 điểm) Cho x = 2005. Tính giá trị của biểu thức: 2005 2004 2003 2002 2 x − x + x − x + − x + x − 2006 2006 2006 .... 2006 2006 1 ĐỀ SỐ 50: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Câu 1 . ( 2đ) Cho: dc a= = . b b c + +3. Chứng minh: da a b c⎟ = ⎜⎝⎛+ + b c d ⎞ ⎠ Câu 2. (1đ). Tìm A biết rằng: a c b A = c a +. b c = a b + = + Câu 3. (2đ). Tìm x ∈ Zđể A∈ Z và tìm giá trị đó. 1 2 a). A = 23 − x. x. b). A = 3 + x − x + Câu 4. (2đ). Tìm x: a) x − 3= 5 . b). ( x+ 2) 2 = 81. c). 5 x + 5 x+ 2 = 650 Câu 5. (3đ). Cho △ ABC vuông cân tại A, trung tuyến AM . E ∈ BC, BH,CK ⊥ AE, (H,K ∈ AE). Chứng minh △ MHK vuông cân. ĐỀ THI HỌC SINH GIỎI TOÁN LỚP 7 Câu 1: (2đ) Rút gọn A=22 x x − Câu 2 (2đ) x x + − 8 20 Ba lớp 7A,7B,7C có 94 học sinh tham gia trồng cây. Mỗi học sinh lớp 7A trồng được 3 cây, Mỗi học sinh lớp 7B trồng được 4 cây, Mỗi học sinh lớp 7C trồng được 5 cây,. Hỏi mỗi lớp có bao nhiêu học sinh. Biết rằng số cây mỗi lớp trồng được đều như nhau. Câu 3: (1,5đ) Chứng minh rằng 2006 10 53 +là một số tự nhiên. 9 Câu 4 : (3đ) Cho góc xAy = 600 vẽ tia phân giác Az của góc đó . Từ một điểm B trên Ax vẽ đường thẳng song song với với Ay cắt Az tại C. vẽ Bh ⊥ Ay,CM ⊥Ay, BK ⊥ AC.Chứng minh rằng . a, K là trung điểm của AC. b, BH = 2AC c, KMC đều Câu 5 (1,5 đ) Trong một kỳ thi học sinh giỏi cấp Huyện, bốn bạn Nam, Bắc, Tây, Đông đoạt 4 giải 1,2,3,4 . Biết rằng mỗi câu trong 3 câu dưới đây đúng một nửa và sai 1 nửa: a, tây đạt giải 1, Bắc đạt giải 2. b, Tây đạt giải 2, Đông đạt giải 3. c, Nam đạt giải 2, Đông đạt giải 4. Em hãy xác định thứ tự đúng của giải cho các bạn. ĐỀ SỐ 51: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1: (3 điểm): Tính 1 1 2 2 3 18 (0,06: 7 3 .0,38) : 19 2 .4 ⎡ ⎤ ⎛ ⎞ ⎢ ⎥ − + − ⎜ ⎟ ⎣ ⎦ ⎝ ⎠ 6 2 5 3 4 Bài 2: (4 điểm): Cho a c =chứng minh rằng: c b +b) 2 2 a) 2 2 a c a b a b a − − += 2 2 = 2 2 b c b Bài 3:(4 điểm) Tìm xbiết: a c a + x + − = −b)15 3 6 1 a) 14 2 5 − + = − x x 12 7 5 2 Bài 4: (3 điểm) Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5m/s, trên cạnh thứ ba với vận tốc 4m/s, trên cạnh thứ tư với vận tốc 3m/s. Hỏi độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên bốn cạnh là 59 giây Bài 5: (4 điểm) Cho tam giác ABC cân tại A có 0 A 20 =, vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh: g) Tia AD là phân giác của góc BAC h) AM = BC Bài 6: (2 điểm): Tìm x y, ∈biết: 2 2 25 8( 2009) − = − y x --------------------------------------------------------- ĐÁP ÁN ĐỀ THI Bài 1: 3 điểm 1 1 2 2 3 18 (0,06: 7 3 .0,38) : 19 2 .4 ⎡ ⎤ ⎛ ⎞ ⎢ ⎥ − + − ⎜ ⎟ ⎣ ⎦ ⎝ ⎠= 6 2 5 3 4 109 6 15 17 38 8 19 ( : . ) : 19 . ⎡ ⎤ ⎛ ⎞ = ⎢ ⎥ − + − ⎜ ⎟ ⎣ ⎦ ⎝ ⎠ 6 100 2 5 100 3 4 ⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎢ ⎥ − + − ⎜ ⎟ ⎜ ⎟ ⎣ ⎦ ⎝ ⎠ ⎝ ⎠ 0.5đ = = 109 3 2 17 19 38 . . : 19 6 50 15 5 50 3 ⎡ ⎤ ⎛ ⎞ ⎢ ⎥ − + ⎜ ⎟ ⎣ ⎦ ⎝ ⎠ 109 2 323 19 : 6 250 250 3 1đ 0.5 = 109 13 3 ⎛ ⎞ ⎜ ⎟ − ⎝ ⎠= 0.5đ . 6 10 19 = 506 3 253 = 0.5đ . Bài 2: 30 19 95 a) Từ a c =suy ra 2 .0.5đ c b c a b = 2 2 2 a c a a b khi đó + + . = 2 2 2 0.5đ b c b a b + + . a a b a ( ) = + +0.5đ = b a b b ( ) 2 2 2 2 a c a b c b b) Theo câu a) ta có: + + = ⇒ = 2 2 2 2 b c b a c a + + 2 2 2 2 0.5đ từ 2 2 2 2 1 1 b c b b c b + + = ⇒ − = − a c a a c a + + 2 2 2 2 b c a c b a 1đ hay + − − − 0.5đ 2 2 = vậy a c a + 2 2 b a b a − − 0.5đ 2 2 = Bài 3: a) a c a + 1 x + − = − 5 1 4 2 x + = − + 0.5đ 5 2 4 1 1 2 2 x x + = ⇒ + =hoặc 1 x + = − 1đ 5 5 5 2 Với 1 1 2 2 x x + = ⇒ = −hay 5 5 9 x = 0.25đ 5 Với 1 1 2 2 x x + = − ⇒ = − −hay 5 5 b) 15 3 6 1 − + = − x x 12 7 5 2 6 5 3 1 x x + = +0.5đ 5 4 7 2 6 5 13 ( ) + =x 0.5đ 5 4 14 49 13 x = 0.5đ 20 14 130 x =0.5đ 343 Bài 4: 11 x = − 0.25đ 5 Cùng một đoạn đường, cận tốc và thời gian là hai đại lượng tỉ lệ nghịch 0.5đ Gọi x, y, z là thời gian chuyển động lần lượt với các vận tốc 5m/s ; 4m/s ; 3m/s Ta có: 5. 4. 3. x y z = =và x x y z + + + = 591đ hay: x y z x x y z + + + 59 60 1 1 1 1 1 1 1 59 = = = = = + + + 5 4 3 5 5 4 3 60 0.5đ Do đó: 1 x = =; 60. 12 5 1 x = =; 60. 15 4 1 x = = 0.5đ 60. 20 3 Vậy cạnh hình vuông là: 5.12 = 60 (m) 0.5đ Bài 5: -Vẽ hình, ghi GT, KL đúng 0.5đ a) Chứng minh ΔADB = ΔADC (c.c.c) 1đ suy ra DAB DAC = Do đó 0 0 DAB = = 20 : 2 10 b) ΔABC cân tại A, mà 0 A = 20(gt) nên 0 0 0 ABC = − = (180 20 ): 2 80 ΔABC đều nên 0 DBC = 60 Tia BD nằm giữa hai tia BA và BC suy ra 0 0 0 ABD = − = 80 60 20. Tia BM là phân giác của góc ABD nên 0 ABM =10 Xét tam giác ABM và BAD có: AB cạnh chung ; 0 0 BAM ABD ABM DAB = = = = 20 ; 10 A 200 M D B C Vậy: ΔABM = ΔBAD (g.c.g) suy ra AM = BD, mà BD = BC (gt) nên AM = BC Bài 6: 2 2 25 y 8(x 2009) − = − Ta có 8(x-2009)2 = 25- y2 8(x-2009)2 + y2 =25 (*) 0.5đ Vì y2 ≥0 nên (x-2009)2 25 ≤, suy ra (x-2009)2 = 0 hoặc (x-2009)2 =1 0.5đ 8 Với (x -2009)2 =1 thay vào (*) ta có y2 = 17 (loại) Với (x- 2009)2 = 0 thay vào (*) ta có y2 =25 suy ra y = 5 (do y∈) 0.5đ Từ đó tìm được (x=2009; y=5) 0.5đ ĐỀ SỐ 52: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) 1 1 1 1 + + + + Bài 1. Tính ... 1.6 6.11 11.16 96.101 1 1 1 Bài 2. Tìm giá trị nguyên dương của x và y, sao cho: + = x y 5 Bài 3. Tìm hai số dương biết: tổng, hiệu và tích của chúng tỷ lệ nghịch với các số 20, 140 và 7 Bài 4. Tìm x, y thoả mãn: x 1 x 2 y 3 x 4 − + − + − + − = 3 Bài 5. Cho tam giác ABC có góc ABC = 500 ; góc BAC = 700 . Phân giác trong góc ACB cắt AB tại M. Trên MC lấy điểm N sao cho góc MBN = 400. Chứng minh: BN = MC. ĐỀ SỐ 52: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Bài 1:(4 điểm) a) Thực hiện phép tính: 12 5 6 2 10 3 5 2 2 .3 4 .9 5 .7 25 .49 A2 .3 8 .3 125.7 5 .14 − − = − 6 3 2 4 5 9 3 ( ) ( ) + + b) Chứng minh rằng : Với mọi số nguyên dương n thì : 2 2 3 2 3 2 n n n n + + − + −chia hết cho 10 Bài 2:(4 điểm) Tìm x biết: 1 4 2 3,2 a. ( ) x − + = − + 3 5 5 1 11 7 7 0 x x + + b. ( ) ( ) x x − − − = Bài 3: (4 điểm) e) Số A được chia thành 3 số tỉ lệ theo 2 3 1 : : 5 4 6. Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. 2 2 a c a f) Cho a c =. Chứng minh rằng: c b Bài 4: (4 điểm) += 2 2 b c b + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE b) Gọi I là một điểm trên AC ; K là một điểm trên EB sao cho AI = EK . Chứng minh ba điểm I , M , K thẳng hàng c) Từ E kẻ EH BC ⊥ (H BC ∈ ). Biết HBE= 50o ; MEB=25o . Tính HEMvà BME Bài 5: (4 điểm) Cho tam giác ABC cân tại A có 0 A 20 =, vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh: i) Tia AD là phân giác của góc BAC j) AM = BC ……………………………… Hết ……………………………… ĐÁP ÁN VÀ HƯỚNG DẪN CHẤM MÔN TOÁN 7 Bài 1:(4 điểm): Đáp án A− − − − 2 .3 4 .9 5 .7 25 .49 2 .3 2 .3 5 .7 5 .7 10 12 5 6 2 10 3 5 2 12 5 12 4 10 3 4= − = − a) (2 điểm) 2 .3 8 .3 125.7 5 .14 2 .3 2 .3 5 .7 5 .2 .7 + + + + 6 3 9 3 12 6 12 5 9 3 9 3 3 2 4 5 ( ) ( ) 2 .3 . 3 1 5 .7 . 1 7 − − 12 4 10 3 = − ( )( ) ( ) 2 .3 . 3 1 5 .7 . 1 2 12 5 9 3 3 + + ( ) 2 .3 .2 5 .7 . 6 12 4 10 3 = − − ( ) 2 .3 .4 5 .7 .9 12 5 9 3 1 10 7 = − = − 6 3 2 b) (2 điểm) 3 n + 2 - Với mọi số nguyên dương n ta có: 2 2 3 2 3 2 n n n n + + − + −= 2 2 3 3 2 2 n n n n + + + − − =2 2 3 (3 1) 2 (2 1) n n + − + =1 3 10 2 5 3 10 2 10 n n n n− ⋅ − ⋅ = ⋅ − ⋅ = 10( 3n -2n) Vậy 2 2 3 2 3 2 n n n n + + − + −10 với mọi n là số nguyên dương. Bài 2:(4 điểm) Đáp án a) (2 điểm) Thang điể0,5 điểm 0,5 điểm 0,5 điểm 0,5 điểm 0,5 điểm 1 điểm 0,5 điểm Thang điể0,5 điểm 0,5 điểm 0,5 điểm 0,5 điểm 4 2 1 4 16 2 x x −− + = − + ⇔ − + = + 13,23 5 5 3 5 5 5 ( ) 1 4 14 ⇔ − + = x 3 5 5 x− = ⎡ 1 2 x ⇔ − = ⇔ ⎢⎢⎢⎣ 12 − =− 31 2 3 x 3 1 7 23 31 5 23 3 = + =− =− + = x ⎡⎢⎢⎢⎣ ⇔ x b) (2 điểm) x x + + 1 11 x x − − − = 7 7 0 ( ) ( ) x + 1 10 ⇔ − − − = ⎡ ⎤ ⎣ ⎦ x x 7 1 7 0 ( ) ( ) ⇔ − − − = ⎡ ⎤ ⎣ ⎦ x + 1 10 ( )( )( ) x x 7 1 7 0 ⎛ ⎞ ⎜ ⎟ ⎝ ⎠+ x 1 − = 7 0 ⎡ x ⇔ ⎢⎢⎢⎣ 1 ( 7) 0 − − = 10 x x x − = ⇒ = 7 0 7 ⎡ ⇔ ⎢⎣ ( 7) 1 8 x x − = ⇒ = 10 0,5 điểm 0,5 điểm 0,5 điểm 0,5 điểm Bài 3: (4 điểm) Đáp án Thang điểm a) (2,5 điểm) Gọi a, b, c là ba số được chia ra từ số A. Theo đề bài ta có: a : b : c = 2 3 1 5 4 6(1) : : và a2 +b2 +c2 = 24309 (2) = = = k ⇒2 3 k a b c Từ (1) ⇒ 2 3 1 a k b k c = = = ; ; 5 4 6 5 4 6 0,5 điểm 0,5 điểm 0,5 điểm Do đó (2) ⇔ 2 4 9 1 ( ) 24309 k + + = 25 16 36 ⇒k = 180 và k =−180 + Với k =180, ta được: a = 72; b = 135; c = 30. Khi đó ta có số A = a + b + c = 237. + Với k =−180, ta được: a = −72; b =−135; c =−30 Khi đó ta có só A =−72+( −135) + ( −30) = −237. b) (1,5 điểm) Từ a c =suy ra 2 c a b =. c b khi đó 2 2 2 a c a a b + + . + + = 2 2 2 b c b a b . = ( ) a a b a += b a b b ( ) + Bài 4: (4 điểm) Đáp án Vẽ hình A I B M C H K E a/ (1điểm) Xét ΔAMCvà ΔEMBcó : AM = EM (gt ) AMC= EMB(đối đỉnh ) BM = MC (gt ) Nên : ΔAMC= ΔEMB(c.g.c ) 0,5 điểm ⇒AC = EB Vì ΔAMC= ΔEMB ⇒ MAC= MEB 0,5 điểm 0,5 điểm 0,5 điểm 0,5 điểm 0,5 điểm Thang điể0,5 điểm (2 góc có vị trí so le trong được tạo bởi đường thẳng AC và EB cắt đường thẳng AE ) Suy ra AC // BE . 0,5 điểm b/ (1 điểm ) Xét ΔAMIvà ΔEMKcó : AM = EM (gt ) MAI= MEK( vì Δ = Δ AMC EMB) AI = EK (gt ) Nên Δ = Δ AMI EMK( c.g.c ) 0,5 điểm Suy ra AMI= EMK Mà AMI+ IME= 180o ( tính chất hai góc kề bù ) ⇒ EMK+ IME= 180o ⇒Ba điểm I;M;K thẳng hàng 0,5 điểm c/ (1,5 điểm ) Trong tam giác vuông BHE ( H= 90o ) có HBE= 50o ⇒ HBE= 90o - HBE= 90o - 50o =40o 0,5 điểm ⇒ HEM= HEB - MEB= 40o - 25o = 15o 0,5 điểm BMElà góc ngoài tại đỉnh M của ΔHEM Nên BME= HEM+ MHE= 15o + 90o = 105o ( định lý góc ngoài của tam giác ) 0,5 điểm Bài 5: (4 điểm) A 200M D BC -Vẽ hình a) Chứng minh ΔADB = ΔADC (c.c.c) 1 điểm suy ra DAB DAC =0,5 điểm Do đó 0 0 DAB = = 20 : 2 100,5 điểm b) ΔABC cân tại A, mà 0 A = 20(gt) nên 0 0 0 ABC = − = (180 20 ): 2 80 ΔABC đều nên 0 DBC = 600,5 điểm Tia BD nằm giữa hai tia BA và BC suy ra 0 0 0 ABD = − = 80 60 20 . Tia BM là phân giác của góc ABD nên 0 ABM =100,5 điểm Xét tam giác ABM và BAD có: AB cạnh chung ; 0 0 BAM ABD ABM DAB = = = = 20 ; 10 Vậy: ΔABM = ΔBAD (g.c.g) suy ra AM = BD, mà BD = BC (gt) nên AM = BC 0,5 điểm Lưu ý: Nếu học sinh làm theo cách khác đúng vẫn đạt điểm tối đa. ĐỀ SỐ 53: ĐỀ THI HỌC SINH GIỎI (Thời gian làm bài 120 phút) Câu 1 ( 2 điểm) Thực hiện phép tính : 2 ⎢⎢⎣⎡⎟ + ⎥⎥⎦⎤ ⎜⎝⎛− 1 ⎞ ⎜⎝⎛ 1 ⎞ 1 a. 1 ) 6. 3 ⎟ − − 3. ⎠ 3 ⎠ 1 : ( − − 3 2 3 2 ⎜⎝⎛ ⎞ ⎜⎝⎛ 3 ⎞ 2003 ⎟ − . ( ) ⎟ − 3 ⎠ 4 ⎠ . 1 b. 2 2 3 ⎜⎝⎛ ⎞ ⎜⎝⎛ 5 ⎟⎠⎞ ⎟ − 5 ⎠ . 12 Câu 2 ( 2 điểm) 2 a. Tìm số nguyên a để13 a alà số nguyên + + a + b. Tìm số nguyên x, y sao cho x- 2xy + y = 0 Câu 3 ( 2 điểm) a. Chứng minh rằng nếu a + c = 2b và 2bd = c(b + d) thì dc a=với b, d khác 0 b b. Cần bao nhiêu số hạng của tổng S = 1 + 2 + 3 +… để được một số có ba chữ số giống nhau . Câu 4 ( 3 điểm) Cho tam giác ABC có góc B bằng 450 , góc C bằng 1200. Trên tia đối của tia CB lấy điểm D sao cho CD = 2CB . Tính góc ADE Câu 5 ( 1điểm) Tìm mọi số nguyên tố thoả mãn : x2- 2y2 = 1 ĐÁP ÁN CHẤM TOÁN 7 CÂ U HƯỚNG DẪN CHẤM ĐIỂM 1.a Thực hiện theo từng bước đúng kết quả -2 cho điểm tối đa 1Điểm 1.b Thực hiện theo từng bước đúng kết quả 14,4 cho điểm tối đa 1Điểm 2.a 2 a a ( 1) 3 + + 3 Ta có : 13 a a= 1 + + = + a a + a + 1 a + 2 vì a là số nguyên nên 13 a alà số nguyên khi 1 + + 3 a +là số nguyên a + hay a+1 là ước của 3 do đó ta có bảng sau : a+1 -3 -1 1 3 a -4 -2 0 2 2 Vậy với a∈{− 4,−2,0,2}thì 13 a alà số nguyên + + a + 0,25 0,25 0,25 0,25 2.b Từ : x- 2xy + y = 0 Hay (1- 2y)(2x - 1) = -1 Vì x,y là các số nguyên nên (1 - 2y)và (2x - 1) là các số nguyên do đó ta có các trường hợp sau : 1 2 1 − = y ⎩⎨⎧== x 0 ⎩⎨⎧− = − ⇒ 2 1 1 x y 0 0,25 0,25