🔙 Quay lại trang tải sách pdf ebook Vũ Trụ Trong Vỏ Hạt Dẻ Ebooks Nhóm Zalo MỤC LỤC GIỚI THIỆU CỦA VIETSCIENCES GIỚI THIỆU CỦA NHÀ XUẤT BẢN LỜI NÓI ĐẦU CHƯƠNG 1 LƯỢC SỬ VỀ THUYẾT TƯƠNG ĐỐI CHƯƠNG 2 HÌNH DÁNG CỦA THỜI GIAN CHƯƠNG 3 VŨ TRỤ TRONG MỘT VỎ HẠT CHƯƠNG 4 TIÊN ĐOÁN TƯƠNG LAI CHƯƠNG 5 BẢO VỆ QUÁ KHỨ CHƯƠNG 6 TƯƠNG LAI CỦA CHÚNG TA? CÓ THỂ LÀ STAR TREK HAY KHÔNG? CHƯƠNG 7 MÀNG VŨ TRỤ MỚI THUẬT NGỮ CHỈ MỤC GIỚI THIỆU CỦA VIETSCIENCES Thời gian gần đây các ngành khoa học đặc biệt ngành vật lý đã làm được một bước tiến rất dài. Kiến thức của ngành vật lý đã không còn rời rạc, xa vời mà nó đã dần trở thành một khoa học thống nhất. Các lý thuyết đã và đang kết nối với nhau thành một bản trường ca. Bản trường ca này không chỉ nhằm giải thích các quan điểm triết học cao siêu của con người với vũ trụ mà nó lại còn thâm nhập vào mọi lĩnh vực mọi ngõ ngách ứng dụng trong đời sống. Một trong những nhà vật lý nổi bật nhất sau Newton và Einstein sống ở cuối thiên niên kỷ thứ hai của nhân loại không ai khác hơn là Stephen Hawking (sinh năm 1942). Ngoài những đóng góp vĩ đại của ông trong nỗ lực thống nhất các qui luật của vật lý thì ông còn có một khả năng truyền đạt tư tưởng tuyệt vời. Các sách của ông viết nhằm giới thiệu về triết học, vật lý cũng như về vũ trụ quan sinh động và dễ hiểu đến nỗi có nhiều lần những sách này đã dược dịch ra nhiều thứ tiếng và chúng còn bán chạy hơn cả những tiểu thuyết hay ho hấp dẫn nhất. Vietsciences xin giới thiệu với các bạn tác phẩm “Vũ Trụ Trong Một Vỏ Hạt” của dịch giả Dạ Trạch từ nguyên bản Anh ngữ “The Universe in a Nutshell” (2001). Vì là người làm việc nghiên cứu trong chuyên ngành vật lý nên anh Dạ Trạch hiểu rất sâu, chính xác, và rõ ràng các tư tưởng mà Hawking nêu ra trong cuốn sách mới này của ông. Chúng tôi tin rằng bản dịch Việt ngữ mà anh Dạ Trạch đã dày công dịch thuật sẽ mang đến cho các bạn đúng những cảm giác và các kiến thức lý thú, hấp dẫn, bất ngờ mà Hawking đã đem lại cho hàng triệu độc giả bằng tiếng mẹ đẻ là Anh ngữ. Trân Trọng Võ Quang Nhân Vietsciences: http://vietsciences.free.fr Ebook miễn phí tại : www.Sachvui.Com GIỚI THIỆU CỦA NHÀ XUẤT BẢN Cuốn Lược sử thời gian (A Brief History of Time), cuốn sách đã bán ra hàng triệu bản của Stephen Hawking đã đưa những tư tưởng của nhà vật lý lý thuyết thiên tài này tới bạn đọc trên toàn thế giới. Còn đây, trong lần xuất bản này, Hawking trở lại với phần tiếp theo với một cuốn sách có rất nhiều hình minh họa hé mở bí mật về những khám phá quan trọng đã đạt được trong những năm kể từ khi cuốn sách đầu tiên của ông ra đời. VŨ TRỤ TRONG MỘT VỎ HẠT Một trong những nhà tư tưởng vĩ đại nhất của thời đại chúng ta là Stephen Hawking, một biểu tượng của trí tuệ, ông được biết đến không chỉ qua những ý tưởng bất ngờ mà còn vì sự trong sáng và thông minh trong cách ông diễn giải các ý tưởng đó. Cuốn sách mới này sẽ đưa chúng ta đến những vấn đề mới nhất của vật lý lý thuyết, ở đó, theo những nguyên tắc điều khiển thế giới của người bình thường, sự thật còn kỳ lạ hơn cả trí tưởng tượng. Giống như nhiều nhà vật lý lý thuyết khác, giáo sư Hawking đang tìm kiếm điều cốt lõi của khoa học - “Lý thuyết về vạn vật” (Theory of Everything) nằm ở trái tim của vũ trụ. Với phong cách dễ tiếp cận và hài hước, ông đưa chúng ta vào lĩnh vực nghiên cứu để hé mở những bí mật của vũ trụ - từ hấp dẫn đến siêu hấp dẫn, từ lượng tử đến thuyết-M, từ ảnh đa chiều đến lưỡng tính. Ông đưa chúng ta đến biên giới của khoa học, ở đó thuyết siêu dây và các màng-p có thể là đầu mối cuối cùng cho bài toán. Ông cho phép chúng ta đi cùng một trong những chuyến thám hiểm trí tuệ thú vị nhất của ông khi ông tìm cách “kết hợp thuyết tương đối rộng của Einstein và ý tưởng lấy tổng theo các lịch sử của Feynman vào một lý thuyết thống nhất mô tả tất cả mọi sự kiện xảy ra trong vũ trụ”. Với lời văn đầy nhiệt huyết, giáo sư Hawking mời chúng ta đi theo bước chân của những nhà du hành trong không thời gian. Cuốn sách với các hình minh họa màu giúp làm sáng tỏ chuyến du hành vào thế giới siêu thực của các hạt, các dây, các màng chuyển động trong không thời gian mười một chiều này, ở đó các hố đen bốc hơi và biến mất và mang những bí mật đi theo chúng; và ở đó hạt giống vũ trụ nguyên thủy mà từ đó vũ trụ của chúng ta xuất hiện chính là một cái hạt nhỏ bé. Vũ trụ trong một vỏ hạt là một cuốn sách cần thiết với tất cả chúng ta để hiểu vũ trụ chúng ta đang sống. Giống như tập trước của cuốn sách - Lược sử về thời gian, cuốn sách này truyền tải điều thú vị trong khoa học khi các bí mật tự tiết lộ bản thân chúng. Stephen Hawking năm 2001 LỜI NÓI ĐẦU Tôi không ngờ cuốn sách khoa học phổ thống Lược sử về thời gian lại thành công đến thế. Nó nằm trong danh sách những cuốn sách bán chạy nhất của tờ báo Sunday Times trong hơn bốn năm, lâu hơn bất kỳ cuốn sách bán chạy khác, và đặc biệt là sách về khoa học lại không phải dễ dàng gì. Sau đó, mọi người hỏi tôi có tiếp tục kéo dài cuốn sách đó hay không. Tôi từ chối vì tôi không muốn viết Đứa con của lược sử về thời gian hay Lịch sử dài hơn về thời gian và bởi vì tôi bận rộn với công việc nghiên cứu. Nhưng tôi đã nhận ra rằng có những vấn đề cho một loại sách khác có thể hiểu một cách dễ dàng. Lược sử về thời gian được viết theo kiểu trình tự, phải đọc các chương đầu mới tiếp tục các chương tiếp. Một số người thích kiểu đọc này nhưng một số khác nếu bị tắc ở các chương đầu sẽ không bao giờ đọc những phần thú vị hơn của chương tiếp theo. Ngược lại, cuốn sách này giống như một cái cây: chương một và hai là cái thân và các chương sau là các cành lá. Các cành lá khá độc lập với nhau và có thể tóm được sau khi đọc xong phần thân chính. Chúng liên quan đến những vấn đề tôi đã nghiên cứu trong khoảng thời gian từ sau khi xuất bản cuốn Lược sử về thời gian đến nay. Do đó chúng mô tả những vấn đề nóng bỏng nhất của khoa học hiện nay. Trong chương một tôi cố tránh cấu trúc trình tự. Các minh họa và các chú thích cho các hình được thể hiện khá độc lập với lời viết giống như Lược sử về thời gian: ấn bản minh họa xuất bản năm 1996, các thông tin bổ sung cung cấp thêm cơ hội đào sâu thêm chủ đề được chương sách đề cập. Năm 1988, khi cuốn Lược sử thời gian ra đời thì Lí thuyết về tất cả (Theory of Everything) vừa mới được phát triển. Từ đó đến nay thì hiện trạng thay đổi thế nào? Chúng ta đã tiến đến gần mục đích của chúng ta chưa? Cuốn sách này mô tả, từ đó đến nay chúng ta đã đi được rất xa. Nhưng quãng đường phía trước vẫn còn dài chưa biết bao giờ có thể kết thúc được. Nhưng như người ta thường nói, đi trong hy vọng tốt hơn là đến đích. Mong muốn khám phá chính là nhiên liệu cho sự sáng tạo của chúng ta, không chỉ trong khoa học. Nếu chúng ta đến đích thì tinh thần của chúng ta sẽ teo lại và chết. Nhưng tôi không nghĩ rằng chúng ta chịu dẫm chân tại chỗ: chúng ta sẽ làm tăng độ phức tạp, không theo chiều sâu thì chúng ta cũng là theo chiều rộng đang gia tăng. Tôi muốn chia sẻ niềm vui sướng khi các tạo ra phát minh và bức tranh hiện thực đang hợp lại với nhau. Chi tiết về các công trình mang tính kỹ thuật nhưng tôi tin các ý tưởng chính được chuyển tải mà không cần đến các công cụ toán học. Tôi hy vọng tôi sẽ thành công. Tôi nhận được nhiều sự giúp đỡ khi viết cuốn sách này. Tôi đặc biệt muốn nhắc đến Thomas Hertog và Neel Shearer vì đã giúp đỡ soạn thảo các hình vẽ, chú thích, thông tin tham khảo, Ann Harris và Kitty Ferguson vì chuẩn bị bản thảo (đúng hơn là các file máy tính vì tất cả những điều tôi viết đều ở dưới dạng điện tử) Philip Dunn ở Book Lab và Moonrunner Design vì chuẩn bị các hình minh họa. Ngoài ra tôi muốn cám ơn tất cả những người đã giúp đỡ tôi có một cuộc sống bình thường và tiếp tục nghiên cứu khoa học. Không có họ tôi không bao giờ có thể viết được cuốn sách này. Stephen Hawking Cambridge, 2/5/2001 CHƯƠNG 1 LƯỢC SỬ VỀ THUYẾT TƯƠNG ĐỐI Eistein thiết lập hai lý thuyết căn bản của thế kỷ hai mươi: Lý thuyết tương đối rộng và lý thuyết lượng tử như thế nào? Albert Einstein, cha đẻ của thuyết tương đối hẹp và thuyết tương đối rộng sinh ra ở Ulm, Đức vào năm 1879. Một năm sau đó gia đình ông chuyển đến Munich, tại đó, cha ông - Herman và cậu ông - Jacob khởi sự kinh doanh về đồ điện nhưng không mấy thành công. Einstein không phải là thần đồng nhưng có người cho rằng ông là một học sinh cá biệt ở phổ thông thì lại là một sự cường điệu. Năm 1894 công việc làm ăn của cha ông bị đổ bể nên gia đình chuyển đến Milan. Gia đình quyết định ông nên ở lại để hoàn thành bậc học phổ thông, nhưng ông không thích chủ nghĩa độc đoán của trường học nên chỉ sau đó mấy tháng ông đoàn tụ với gia đình ở Ý. Sau đó ông tốt nghiệp phổ thông ở Zurich và tốt nghiệp đại học trường Bách khoa liên bang vào năm 1900. Bản tính hay tranh luận và và ác cảm với quyền lực đã không mang cho ông một chân giáo sư ở trường Bách khoa liên bang và không một giáo sư nào của trường mời ông làm trợ giảng, mà thời bấy giờ đó là con đường bình thường để theo đuổi sự nghiệp khoa học. Cuối cùng thì hai năm sau ông cũng xoay sở được một việc ở Văn phòng sáng chế ở Bern. Ông làm việc tại đó trong thời gian ông viết ba bài báo, trong đó hai bài đã đưa ông trở thành nhà khoa học hàng đầu thế giới và bắt đầu hai cuộc cách mạng về tư tưởng làm thay đổi hiểu biết của chúng ta về không gian, thời gian và bản thân thực tại vào năm 1905. Gần cuối thế kỷ thứ 19, các nhà khoa học tin rằng họ gần như đã mô tả vũ trụ một cách toàn vẹn. Họ cho rằng không gian được lấp đầy bởi một loại vật chất liên tục gọi là Ê-te. Ánh sáng và các tín hiệu vô tuyến là các sóng lan truyền trong ê-te giống như sóng âm lan truyền trong không khí. Và tất cả các điều cần làm cho một lý thuyết hoàn thiện là phép đo chính xác để xác định tính đàn hồi của ê-te. Thực ra các phép đo như thế đã được xây dựng hoàn chỉnh tại phòng thí nghiệm Jefferson ở trường đại học Harvard mà không dùng đến một cái đinh sắt nào để tránh làm nhiễu các phép đo từ trường yếu. Tuy vậy những người xây dựng hệ đo đã quên rằng các viên gạch nâu đỏ xây nên phòng thí nghiệm và phần lớn các tòa nhà ở Harvard đều chứa một lượng lớn sắt. Ngày nay các tòa nhà đó vẫn được sử dụng, nhưng họ vẫn không chắc là nếu không có các đinh sắt thì sàn thư viện của trường có thể nâng đỡ được sức nặng là bao nhiêu. Albert Einstein năm 1920 Vào cuối thế kỷ 19, các ý tưởng trái ngược nhau về sự có mặt của ê-te bắt đầu xuất hiện. Người ta tin rằng ánh sáng chuyển động với một tốc độ xác định so với ê-te và nếu bạn chuyển động cùng hướng với ánh sáng trong ê-te thì bạn sẽ thấy ánh sáng chuyển động chậm hơn, và nếu bạn chuyển động ngược hướng với ánh sáng thì bạn sẽ thấy ánh sáng di chuyển nhanh hơn. (hình 1.1) (Hình 1.1) LÝ THUYẾT Ê-TE CỐ ĐỊNH Nếu ánh sáng là sóng trong một loại vật chất đàn hồi được gọi là ê-te thì vận tốc của ánh sáng đối với người ở trên tàu vũ trụ chuyển động ngược hướng ánh sáng (a) sẽ nhanh hơn vận tốc của ánh sáng đối với người trong con tàu chuyển động cùng hướng với ánh sáng (b). (Hình 1.2) Người ta không thấy sự khác biệt về vận tốc ánh sáng theo các hướng trong mặt phẳng quỹ đạo của trái đất và hướng vuông góc với mặt phẳng quỹ đạo đó. Và một loạt các thí nghiệm để chứng minh điều đó đã thất bại. Albert Michelson và Edward Morley của trường khoa học ứng dụng ở Cleveland, bang Ohio đã thực hiện các thí nghiệm cẩn thận và chính xác nhất vào năm 1887. Họ so sánh tốc độ ánh sáng của hai chùm sáng vuông góc với nhau. Vì trái đất tự quay quanh mình và quay quanh mặt trời nên dụng cụ thí nghiệm sẽ di chuyển trong ê-te với tốc độ và hướng thay đổi. Nhưng Michelson và Morley cho thấy rằng không có sự khác biệt giữa hai chùm sáng đó. Hình như là ánh sáng truyền với tốc độ như nhau đối với người quan sát, không phụ thuộc vào tốc độ và hướng của người chuyển động. (hình 1.3) (Hình 1.3) ĐO VẬN TỐC ÁNH SÁNG Trong giao thoa kế Michenson-Morley, ánh sáng từ nguồn sáng được tách thành hai chùm bằng một gương bán mạ. Hai chùm sáng đi theo hai hướng vuông góc với nhau sau đó lại kết hợp thành một chùm sáng sau khi đập vào gương bán mạ một lần nữa. Sự sai khác về tốc độ ánh sáng của hai chùm sáng đi theo hai hướng có thể làm cho các đỉnh sóng của chùm sáng này trùng với đáy sóng của chùm sáng kia và chúng triệt tiêu nhau. Hình phải: sơ đồ thí nghiệm được vẽ lại từ sơ đồ được in trên tạp chí Scientific American năm 1887. Dựa trên thí nghiệm Michelson-Morley, một nhà vật lý người Ai-len tên là George Fitzgerald và nhà vật lý người Hà Lan tên là Hendrik Lorentz giả thiết rằng các vật thể chuyển động trong ê-te sẽ co lại và thời gian sẽ bị chậm đi. Sự co và sự chậm lại của đồng hồ làm cho tất cả mọi người sẽ đo được một tốc độ ánh sáng như nhau không phụ thuộc vào việc họ chuyển động như thế nào đối với ê-te (George Fitzgerald và Hendrik Lorentz vẫn coi ê-te là một loại vật chất có thực). Tuy vậy, năm 1905, Eistein đã viết một bài báo chỉ ra rằng nếu người ta không thể biết được người ta chuyển động trong không gian hay không thì khái niệm ê-te không còn cần thiết nữa. Thay vào đó, ông bắt đầu bằng một giả thuyết rằng các định luật khoa học xuất hiện như nhau đối với tất cả những người quan sát chuyển động tự do. Đặc biệt là họ sẽ đo được tốc độ ánh sánh như nhau không phụ thuộc vào tốc độ chuyển động của họ. Tốc độ của ánh sáng độc lập với chuyển động của người quan sát và như nhau theo tất cả các hướng. Ý tưởng này đòi hỏi phải từ bỏ ý nghĩ cho rằng tồn tại một đại lượng phổ quát được gọi là thời gian có thể đo được bằng tất cả các đồng hồ. Thay vào đó, mỗi người có một thời gian riêng của họ. Thời gian của hai người sẽ giống nhau nếu hai người đó đứng yên tương đối với nhau, nhưng thời gian sẽ khác nhau nếu hai người đó chuyển động tương đối với nhau. Giả thuyết này được khẳng định bằng rất nhiều thí nghiệm, trong đó có một thí nghiệm gồm hai đồng hồ chính xác bay theo hướng ngược nhau vòng quanh trái đất và quay lại cho thấy thời gian có sai lệch chút ít. Giả thuyết gợi ý rằng nếu ai đó muốn sống lâu hơn thì người đó nên bay về hướng đông vì như thế thì tốc độ của trái đất sẽ bổ sung vào tốc độ của máy bay. Tuy vậy các bữa ăn trên máy bay sẽ rút ngắn cuộc sống của bạn nhiều hơn nhiều lần một phần nhỏ của giây mà bạn có được. (Hình 1.4) Một phiên bản về nghịch lý anh em sinh đôi (hình 1.5) đã được kiểm tra bằng thực nghiệm từ hai chiếc đồng hồ chính xác bay ngược chiều nhau vòng quanh Trái Đất. Khi chúng gặp nhau thì đồng hồ bay về hướng đông đã ghi lại thời gian ngắn hơn chút ít. (Hình 1.5) NGHỊCH LÝ ANH EM SINH ĐÔI Trong thuyết tương đối, mỗi người quan sát sẽ đo thời gian khác nhau. Điều này có thể dẫn đến nghịch lý anh em sinh đôi (twin paradox). Một người trong cặp anh em sinh đôi (a) trong một phi thuyền thám hiểm không gian chuyển động với vận tốc gần bằng vận tốc ánh sáng (c) trong khi người anh em của anh ta (b) vẫn trên mặt đất. Vì thời gian của (a) trong phi thuyền chậm hơn thời gian của (b) trên trái đất. Nên khi người (a) trở về (a2) anh ta sẽ thấy người anh em của anh ta trên trái đất (b2) già hơn anh ta. Mặc dù nó có vẻ chống lại cảm nhận chung của chúng ta, rất nhiều thí nghiệm chứng minh trong kịch bản này, người du hành vũ trụ sẽ trẻ hơn người còn lại. (Hình 1.6) Một phi thuyền đi ngang qua trái đất từ trái sang phải với vận tốc bằng bốn phần năm vận tốc ánh sáng. Một xung ánh sáng phát ra từ cabin và phản xạ lại ở đầu kia (a). Người trên trái đất nhìn ánh sáng trên phi thuyền. Vì phi thuyền chuyển động nên hai người sẽ quan sát khoảng cách mà ánh sáng đã đi được khi phản xạ lại không bằng nhau (b). Và với họ thời gian mà ánh sáng dùng để truyền cũng không bằng nhau, vì theo giả thuyết của Einstein, tốc độ ánh sáng là như nhau đối với tất cả các người quan sát chuyển động tự do. Giả thuyết của Einstein cho rằng các định luật khoa học xuất hiện như nhau đối với tất cả các người quan sát chuyển động tự do là cơ sở của thuyết tương đối. Gọi như vậy vì nó ngụ ý rằng chỉ có chuyển động tương đối là quan trọng. Vẻ đẹp và sự đơn giản của giả thuyết này đã thuyết phục rất nhiều các nhà tư tưởng, tuy nhiên, vẫn có rất nhiều các ý kiến trái ngược. Einstein đã vứt bỏ hai khái niệm tuyệt đối của khoa học thế kỷ 19: đứng yên tuyệt đối - đại diện là ê-te và thời gian tuyệt đối và phổ quát mà tất cả các đồng hồ đo được. Rất nhiều người thấy rằng đây là một khái niệm không bình thường. Họ hỏi, giả thuyết ngụ ý rằng tất cả mọi thứ đều tương đối, rằng không có một tiêu chuẩn đạo đức tuyệt đối? Sự bứt rứt này tiếp diễn trong suốt những năm 20 và 30 của thế kỷ 20. Khi Einstein được trao giải Nobel vào năm 1921 về một công trình kém quan trọng hơn cũng được ông cho ra đời vào năm 1905. Lúc đó, thuyết tương đối không được nhắc đến vì nó vẫn còn gây nhiều tranh cãi (đến bây giờ tôi vẫn nhận được vài ba bức thư hàng tuần nói rằng Einstein đã sai). Tuy vậy, hiện nay, các nhà vật lý hoàn toàn chấp nhận thuyết tương đối, và các tiên đoán của nó đã được kiểm chứng trong vô vàn ứng dụng. (Hình 1.7) Một hệ quả quan trọng của thuyết tương đối là hệ thức giữa khối lượng và năng lượng. Giả thiết của Einstein về tốc độ của ánh sáng là như nhau đối với tất cả các người quan sát ngụ ý rằng không có gì có thể chuyển động nhanh hơn ánh sáng. Nếu ta dùng năng lượng để gia tốc một vật nào đó, dù là một hạt hay một tàu vũ trụ, thì khối lượng của vật đó sẽ gia tăng cùng với tốc độ và do đó sẽ khó có thể gia tốc thêm được nữa. Ta không thể gia tốc một hạt đến tốc độ ánh sáng vì ta cần một năng lượng lớn vô cùng để làm điều đó. Khối lượng và năng lượng là tương đương và điều đó được tổng kết trong một phương trình nổi tiếng E = mc2(hình 1.7). Có lẽ đây là phương trình vật lý duy nhất mà chúng ta có thể nhìn thấy nó được viết trên đường phố. Một trong số các hệ quả của phương trình trên là hạt nhân của nguyên tử Uranium phân rã thành 2 hạt nhân nhỏ hơn có tổng khối lượng nhỏ hơn khối lượng của hạt nhân ban đầu, việc này sẽ giải tỏa một năng lượng vô cùng lớn. (hình 1.8) (Hình 1.8) NĂNG LƯỢNG LIÊN KẾT HẠT NHÂN Hạt nhân được tạo thành từ proton và neutron liên kết với nhau nhờ lực hạt nhân mạnh. Nhưng khối lượng của hạt nhân luôn nhỏ hơn tổng khối lượng của các proton và neutron riêng lẻ tạo nên chúng. Sự khác nhau chính là một phép đo năng lượng liên kết hạt nhân mà giữ hạt nhân lại với nhau. Năng lượng liên kết này có thể được tính từ hệ thức Einstein: năng lượng liên kết hạt nhân = ∆mc2trong đó ∆m là sự khác nhau giữa khối lượng hạt nhân và tổng các thành phần. Nó giải thoát một lượng năng lượng đủ để tạo nên một sức công phá khổng lồ. Vào năm 1939, khi mà khả năng một cuộc chiến tranh thế giới nữa đang lờ mờ xuất hiện, một nhóm các nhà khoa học đã nhận ra tầm quan trọng và đã thuyết phục Einstein vượt qua sự lưỡng lự của bản thân để điền tên của ông vào một bức thư gửi Tổng thống Roosevelt nhằm thúc giục Hoa Kỳ khởi động chương trình nghiên cứu hạt nhân. Bức thư tiên đoán của Einstein gửi tổng thống Roosevelt năm 1939: “Trong thời gian bốn tháng qua, thông qua các công trình của Joliot ở Pháp cũng như Fermi và Szilard ở Hoa Kỳ, chúng ta có thể xây dựng một phản ứng hạt nhân với một khối lượng lớn Uranium, nhờ đó mà sinh ra một nguồn năng lượng lớn. Bây giờ, chúng ta có thể làm điều này trong một tương lai gần. Mặc dù chưa chắc chắn, nhưng hiện tượng mới này có khả năng dẫn đến việc tạo ra các quả bom có sức công phá cực lớn.” Việc này dẫn đến dự án Manhattan và kết quả của nó là 2 quả bom nguyên tử được ném xuống Hiroshima và Nagasaki vào năm 1945. Một số người đã đổ tội cho Einstein về bom nguyên tử bởi vì ông đã khám phá ra mối liên hệ giữa khối lượng và năng lượng; nhưng điều này giống như là đổ tội cho Newton đã gây ra các vụ tai nạn máy bay vì đã phát hiện ra định luật hấp dẫn. Sau các bài báo gây chấn động vào năm 1905, Einstein trở lên nổi tiến trên thế giới. Nhưng đến tận năm 1909 ông mới được mời vào làm việc tại trường đại học Zurich và do đó, ông có thể từ bỏ công việc ở văn phòng sáng chế Thụy Sỹ. Hai năm sau ông chuyển sang đại học Đức ở Prague, nhưng ông quay trở lại Zurich vào năm 1912, nhưng lần này ông về trường Bách khoa liên bang. Mặc dù chủ nghĩa chống bài Do thái (anti-semitism) đang phổ biến ở châu Âu, ngay cả ở trong các trường đại học, nhưng ông vẫn là một tài sản quý của trường đại học. Có nhiều đề nghị làm việc đến từ Vienna và Utrecht, nhưng ông đã chấp nhận một vị trí ở Viện hàn lâm khoa học Prussian ở Berlin vì ở đó ông không phải đảm nhiệm công việc giảng dạy. Ông chuyển đến Berlin vào tháng 4 năm 1914 và sau đó ít lâu vợ và hai con của ông cũng chuyển đến đó với ông. Cuộc hôn nhân của ông gặp nhiều sóng gió, do vậy, vợ và các con ông nhanh chóng trở lại Zurich. Mặc dầu thỉnh thoảng ông vẫn trở lại thăm họ nhưng cuối cùng cuộc hôn nhân của họ cũng tan vỡ. Sau đó Einstein lấy một người em họ tên là Elsa sống ở Berlin. Trong những năm chiến tranh ông đã sống độc thân và không có ràng buộc về gia đình, có lẽ chính vì thế đây là thời kỳ thăng hoa nhất của ông về mặt khoa học. Mặc dầu thuyết tương đối rất phù hợp với các định luật điện và từ nhưng nó lại không tích hợp với định luật hấp dẫn của Newton. Định luật của Newton nói rằng nếu một lượng vật chất trong một vùng của không gian bị thay đổi thì trường hấp dẫn mà nó tạo ra trong toàn vũ trụ cũng thay đổi ngay lập tức. Điều này có nghĩa là người ta có thể gửi các tín hiệu nhanh hơn ánh sáng (mâu thuẫn với thuyết tương đối); để hiểu tức thời có nghĩa là gì, người ta lại cần đến khái niệm thời gian tuyệt đối và phổ quát, chính điều này lại loại bỏ thời gian cá nhân. Năm 1907, Einstein nhận ra khó khăn này khi ông còn làm việc ở văn phòng sáng chế ở Bern, nhưng phải đến khi ông ở Prague vào năm 1911 ông mới suy nghĩ về vấn đề này một cách nghiêm túc. Ông nhận ra rằng có một mối liên hệ mật thiết giữa gia tốc và trường hấp dẫn. Một người nào đó ở trong một cái hộp đóng kín như là trong một cái thang máy chẳng hạn không thể nhận biết được cái hộp đó đang đứng yên trong trường hấp dẫn của trái đất hay đang bị gia tốc bởi một tên lửa trong không gian (tất nhiên lúc này là trước kỷ nguyên của Star Trek, và Einstein nghĩ về những người đứng trong thang máy hơn là về những con tàu vũ trụ). Nhưng người ta không thể gia tốc hoặc rơi tự do lâu được trong cái thang máy trước khi tai nạn xảy ra! (hình 1.9) (Hình 1.9) Một người quan sát đứng trong một cái hộp không thể nhận ra sự khác nhau khi đứng trong một chiếc thang máy tĩnh trên trái đất (a) hoặc bị gia tốc bởi một tên lửa trong không gian tự do (b). Nếu người ta tắt động cơ của tên lửa (c) cảm giác sẽ giống như trong một chiếc thang máy rơi tự do xuống đất. Nếu trái đất phẳng thì ta có thể nói rằng quả táo rơi xuống đầu Newton là do hấp dẫn hoặc Newton và bề mặt trái đất bị gia tốc lên trên, hai cách nói trên là tương đương (hình 1.10). Sự tương ứng giữa gia tốc và hấp dẫn không sẽ còn đúng khi trái đất là hình cầu, tuy vậy - người ở mặt kia trái đất có thể bị gia tốc theo các chiều ngược lại nhưng vẫn đứng ở những khoảng cách không đổi với nhau. (hình 1.11) Nhưng khi ông quay lại Zurich vào năm 1912, ông đã có một bước đột phá khi nhận ra rằng sự tương ứng đó là đúng nếu hình dáng của không thời gian bị bẻ cong chứ không thẳng như người ta vẫn nghĩ cho tới thời điểm đấy. Ý tưởng của ông là khối lượng và năng lượng đã làm cong không thời gian theo một cách có thể xác định được. Các vật thể như là quả táo hoặc là hành tinh sẽ cố gắng chuyển động thẳng trong không thời gian, nhưng quỹ đạo của chúng sẽ bị bẻ cong bởi một trường hấp dẫn do không thời gian bị cong. (hình 1.12) (Hình 1.12) ĐỘ CONG CỦA KHÔNG THỜI GIAN Gia tốc và hấp dẫn chỉ có thể tương đương với nhau nếu một vật thể có khối lượng lớn bẻ cong không thời gian, do đó bẻ cong cả lộ trình của các vật thể xung quanh nó. Nếu trái đất phẳng (hình 1.10) thì người ta có thể giải thích bằng một trong hai cách tương đương sau: quả táo rơi xuống đầu Newton do lực hấp dẫn hoặc do Newton gia tốc lên phía trên. Sự tương đương này không còn đúng khi trái đất hình cầu (hình 1.11) vì những người ở mặt kia của trái đất sẽ rời xa nhau. Einstein đã giải quyết bài toán này bằng việc giả thiết không gian và thời gian bị cong. Với sự giúp đỡ của Marcel Grossmann, Einstein nghiên cứu lý thuyết không gian và mặt phẳng cong do George Friedrich Riemann phát triển trước đó. Tuy vậy, Riemann nghĩ rằng chỉ có không gian bị bẻ cong. Điều đó làm cho Einstein nghĩ rằng không thời gian cũng bị bẻ cong. Einstein và Grossmann đã viết chung một bài báo vào năm 1913, trong đó họ đã đẩy ý tưởng mà chúng ta nghĩ về lực hấp dẫn chỉ là những biểu hiện của sự cong của không thời gian. Tuy vậy, vì một sai lầm do Einstein gây ra (Einstein cũng rất con người và có thể nhầm lẫn), họ không thể tìm ra các phương trình liên hệ độ cong của không gian với khối lượng và năng lượng trong đó. Einstein vẫn tiếp tục nghiên cứu vấn đề này ở Berlin, không bị ảnh hưởng bởi các vấn đề gia đình và chủ yếu là không bị ảnh hưởng bởi chiến tranh, cho đến khi ông tìm thấy các phương trình đó vào tháng 11 năm 1915. Ông đã trao đổi các ý tưởng của ông với nhà toán học David Hilbert trong chuyến thăm trường đại học Gottingen vào mùa hè năm 1915, và Hilbert cũng tìm ra các phương trình tương tự một cách độc lập trước Einstein vài ngày. Tuy nhiên, ngay cả bản thân Hilbert cũng thừa nhận, tác quyền của lý thuyết mới là thuộc về Einstein. Ý tưởng liên hệ hấp dẫn với độ cong của không thời gian chính là của ông. Đây cũng là một lời khen cho nước Đức vào thời điểm đó khi các cuộc trao đổi và thảo luận khoa học có thể diễn ra mà không bị ảnh hưởng bởi chiến tranh. Điều này hoàn toàn trái ngược với kỷ nguyên Đức quốc xã (Nazi) 20 năm sau đó. Lý thuyết mới về sự cong của không thời gian được gọi là thuyết tương đối rộng để phân biệt với lý thuyết ban đầu không có lực hấp dẫn được mọi người biết đến với cái tên là thuyết tương đối hẹp. Lý thuyết này được khẳng định trong một thí nghiệm rất ấn tượng vào năm 1919, trong một cuộc thám hiểm của các nhà khoa học người Anh về phía Tây châu Phi đã quan sát được độ lệch rất nhỏ của ánh sáng đến từ một ngôi sao đi gần mặt trời trong quá trình nhật thực (hình 1.13). Đây là một bằng chứng trực tiếp cho thấy rằng không thời gian bị bẻ cong, và nó đã khích lệ sự thay đổi lớn nhất của con người trong nhận thức của chúng ta về vũ trụ mà chúng ta đang sống từ khi Euclid viết cuốn sách Hình học cơ sở vào khoảng 300 năm trước Công nguyên. (Hình 1.13) ÁNH SÁNG BỊ BẺ CONG Ánh sáng từ các ngôi sao đi đến gần mặt trời lệch hướng do khối lượng của mặt trời làm cong không thời gian (a). Điều này làm dịch chuyển vị trí biểu kiến của ngôi sao khi nhìn từ trái đất (b). Hiện tượng này có thể quan sát khi nhật thực. Thuyết tương đối rộng của Einstein đã biến không thời gian từ vai trò là một khung nền thụ động trong đó các hiện tượng xảy ra trở thành một tác nhân chủ động trong chuyển động của vũ trụ. Điều đó dẫn tới một bài toán rất lớn và là mối quan tâm hàng đầu của vật lý ở thế kỷ 20. Vũ trụ tràn đầy vật chất và vật chất bẻ cong không thời gian theo một cách làm cho các vật thể rơi vào nhau. Einstein thấy rằng các phương trình của ông không có nghiệm mô tả một vũ trụ tĩnh tại và không thay đổi theo thời gian. Thay vì việc từ bỏ một vũ trụ vĩnh cửu mà ông và phần lớn những người khác tin, ông đã thêm vào một số hạng gọi là hằng số vũ trụ một cách khiên cưỡng. Hằng số này làm cong không thời gian theo hướng ngược lại, do đó các vật thể sẽ chuyển động ra xa nhau. Hiệu ứng đẩy của hằng số vũ trụ có thể cân bằng với hiệu ứng hút của vật chất, cho phép ông thu được một vũ trụ tĩnh tại. Đây là một trong những cơ may bị mất đáng tiếc nhất trong vật lý thuyết. Nếu Einstein dừng lại ở các phương trình ban đầu của ông, ông có thể tiên đoán rằng vũ trụ sẽ giãn nở hoặc co lại. Khả năng vũ trụ thay đổi theo thời gian chỉ được xem xét một cách nghiêm túc cho đến khi có được những quan sát thu được từ kính thiên văn 2,5 m đặt trên đỉnh Wilson vào những năm 1920. Những quan sát này cho thấy rằng các thiên hà ở càng xa nhau thì chuyển động ra xa nhau càng nhanh. Vũ trụ đang giãn nở với khoảng cách giữa 2 thiên hà tăng dần theo thời gian (hình 1.14). Phát hiện này đã loại bỏ sự có mặt của hằng số vũ trụ để có được một vũ trụ tĩnh. Sau này Einstein nói rằng hằng số vũ trụ là sai lầm lớn nhất của đời ông. Tuy vậy, ngày nay, người ta thấy rằng hằng số vũ trụ hoàn toàn không phải là một sai lầm: những quan sát gần đây sẽ được mô tả trong chương 3 gợi ý rằng thực ra là có một hằng số vũ trụ rất nhỏ. (Hình 1.14) Quan sát về các thiên hà chỉ ra rằng vũ trụ đang giãn nở: khoảng cách giữa hầu hết các cặp thiên hà đang gia tăng. Thuyết tương đối rộng đã thay đổi hoàn toàn việc bàn luận nguồn gốc và số phận của vũ trụ. Một vũ trụ tĩnh tại có thể tồn tại mãi mãi hoặc có thể được tạo ra với hình dạng hiện nay của nó tại một thời điểm trong quá khứ. Tuy vậy, nếu bây giờ các thiên hà đang rời xa nhau, điều đó có nghĩa là trong quá khứ chúng đã từng rất gần nhau. Khoảng 15 tỷ năm trước đây, chúng đã từng chập lại với nhau và mật độ rất lớn. Trạng thái này được một linh mục Công giáo tên là Georges Lemaitre, người đầu tiên nghiên cứu về nguồn gốc của vũ trụ gọi là “nguyên tử nguyên thủy” mà ngày nay chúng ta gọi là vụ nổ lớn. Kính viễn vọng 100-inch tại đài quan sát Mount Wilson. Dường như Einstein chưa bao giờ nghiên cứu vụ nổ lớn một cách nghiêm túc. Rõ ràng là ông nghĩ rằng mô hình đơn giản về vũ trụ giãn nở đồng nhất sẽ không đúng nếu người ta theo dõi chuyển động của các thiên hà trong quá khứ và rằng các vận tốc biên của các thiên hà có thể làm cho chúng không chạm vào nhau. Ông nghĩ rằng trước đó vũ trụ ở pha co lại và trượt qua nhau để chuyển sang pha dãn nở hiện nay với một mật độ trung bình. Tuy vậy, bây giờ chúng ta biết rằng để cho các phản ứng hạt nhân ở trong vũ trụ ban đầu tạo ra một lượng lớn các nguyên tố nhẹ mà chúng ta quan sát được xung quanh, thì mật độ cần phải lớn hơn 0.64 tấn/cm3và nhiệt độ phải trên một tỷ độ. Hơn nữa các quan sát về phông vi sóng chỉ ra rằng có thể mật độ đạt đến 1026 tấn/cm3. Ngày nay chúng ta biết rằng thuyết tương đối rộng cua Eistein không cho phép vũ trụ trượt qua nhau để đến pha dãn nở hiện tại. Như sẽ được thảo luận trong chương 2, Roger Pensose và tôi đã có thể chỉ ra rằng thuyết tương đối rộng tiên đoán vũ trụ bắt đầu bằng một vụ nổ lớn. Do đó, lý thuyết của Einstein tiên đoán rằng thời gian, có sự khởi đầu mặc dù ông không thích ý tưởng này cho lắm. Thậm chí Einstein còn miễn cưỡng hơn thừa nhận rằng thuyết tương đối rộng tiên đoán thời gian sẽ kết thúc đối với các ngôi sao nặng khi chúng ở giai đoạn cuối của cuộc đời và khi chúng không còn đủ nhiệt lượng để cân bằng với lực hấp dẫn của bản thân chúng. Lực hấp dẫn này đang cố làm chúng nhỏ đi. Einstein nghĩ rằng, các ngôi sao như vậy sẽ kết thúc cuộc đời ở một trạng thái cuối cùng, nhưng ngày nay chúng ta biết rằng sẽ không có trạng thái cuối cùng cho các ngôi sao có khối lượng lớn hơn hai lần khối lượng mặt trời. Các ngôi sao như vậy sẽ tiếp tục co lại cho đến khi chúng trở thành các hố đen, những vùng mà không thời gian bị bẻ cong đến nỗi ánh sáng không thể thoát ra khỏi đó được. (hình 1.15) (Hình 1.15) Một ngôi sao lớn cạn kiệt nguyên liệu hạt nhân sẽ mất đi nhiệt lượng và co lại. Độ cong của không gian sẽ trở lên lớn đến mức tạo ra một hố đen mà ánh sáng không thể thoát ra được. Thời gian kết thúc trong lòng hố đen. Penrose và tôi cho thấy rằng thuyết tương đối rộng tiên đoán thời gian sẽ kết thúc trong một hố đen, đối với bản thân ngôi sao và đối với một nhà du hành vũ trụ không may bị rơi vào nó. Nhưng cả điểm khởi đầu và kết thúc của thời gian là những nơi mà các phương trình của thuyết tương đối rộng không thể được xác định. Do đó lý thuyết không tiên đoán được cái gì tham gia vụ nổ lớn. Một số người thấy rằng đây là biểu hiện cho tự do của Chúa sáng tạo thế giới theo bất lỳ cách nào mà ngài muốn, nhưng những người khác (trong đó có tôi) cảm thấy rằng sự khởi đầu của vũ trụ cũng được điều khiển bởi các định luật khoa học mà điều khiển vũ trụ tại các thời điểm sau khi vũ trụ hình thành. Chúng ta đã đạt được một số tiến bộ trong vấn đề này, như sẽ được mô tả trong chương 3, nhưng chúng ta vẫn chưa hiểu hoàn toàn nguồn gốc của vũ trụ. Lý do mà thuyết tương đối không còn đúng tại thời điểm vụ nổ lớn là thuyết tương đối không tích hợp được với lý thuyết lượng tử, một cuộc cách mạng khác về tư tưởng vào thời điểm đầu thế kỷ 20. Bước đầu tiến tới thuyết lượng tử được thực hiện vào năm 1900, khi Max Plank ở Berlin khám phá ra rằng bức xạ phát ra từ các vật thể nóng đỏ có thể được giải thích nếu ánh sáng chỉ có thể được phát ra hoặc bị hấp thụ theo những lượng rời rạc được gọi là các lượng tử (quanta). Một trong số các bài báo cách mạng của ông được viết năm 1905, khi ông còn làm việc ở văn phòng sáng chế, Einstein đã chứng minh rằng giả thuyết lượng tử của Plank có thể giải thích một hiệu ứng gọi là hiệu ứng quang điện, trong hiệu ứng này, các kim loại sẽ phát ra các điện tử khi bị ánh sáng chiếu vào. Hiệu ứng là là cơ sở của các đầu thu ánh sáng và vô tuyến, và cũng nhờ công trình này Einstein được trao giải Nobel vật lý. Einstein tiếp tục nghiên cứu lý thuyết lượng tử cho đến những năm 1920, nhưng ông rất băn khoăn về công trình của Heisenberg ở Copenhagen, Paul Dirac ở Cambridge và Erwin Schrodinger ở Zurich, đó là những người đã phát triển một bức tranh mới về thực tại được gọi là cơ học lượng tử. Những hạt tí hon không còn có vị trí và tốc độ chính xác nữa. Thay vào đó, nếu người ta xác định vị trí của hạt càng chính xác bao nhiêu thì người ta càng khó xác định vận tốc của nó bấy nhiêu và ngược lại. Einstein rất khó chịu về những yếu tố ngẫu nhiên, bất định trong các định luật cơ bản và ông chưa bao giờ chấp nhận hoàn toàn cơ học lượng tử. Suy nghĩ của ông được thể hiện trong câu châm ngôn “chúa không chơi trò xúc sắc”. Tuy vậy, phần lớn các nhà khoa học chấp nhận tính đúng đắn của lý thuyết lượng tử mới này bởi vì chúng đã giải thích được một loạt các hiện tượng khó hiểu trước đó và rất phù hợp với các quan sát. Các quy luật lượng tử là cơ sở cho sự phát triển của hóa học, sinh học phân tử, và điện tử hiện đại và là cơ sở cho nền công nghệ đã thay đổi thế giới trong 50 năm qua. Tháng 12 năm 1932, nhận thấy Đức quốc xã và Hitler sắp lên nắm quyền, Eistein rời nước Đức và 4 tháng sau đó ông từ bỏ quyền công dân để giành trọn 20 năm cuộc đời còn lại của mình cho Viện nghiên cứu cấp cao ở Princeton, bang New Jersey. Albert Einstein cùng con rối mô phỏng chính ông ngay sau khi đến Hoa Kỳ định cư lâu dài. Ở Đức, đảng quốc xã đã tiến hành một chiến dịch chống lại “khoa học Do thái” và vì rất nhiều các nhà khoa học Đức là người Do thái, nên đây cũng là một nguyên nhân làm cho người Đức không chế tạo được bom nguyên tử. Einstein và thuyết tương đối của ông là đối tượng chính của chiến dịch này. Khi được hỏi về một cuốn sách được xuất bản với tiêu đề 100 tác giả chống lại Einstein thì ông trả lời: “Tại sao lại một trăm? Nếu tôi sai thì một cũng đủ”. Sau thế chiến hai, ông thúc giục các nước đồng minh thiết lập một tổ chức quốc tế kiểm soát bom nguyên tử. Năm 1948, ông được mời làm tổng thống của nhà nước Israel non trẻ nhưng ông đã từ chối. Một lần ông nói: “chính trị là nhất thời, chỉ có các phương trình mới là vĩnh cửu”. Các phương trình thuyết tương đối của Einstein là tấm bia ghi nhận công lao của ông. Chúng sẽ tồn tại mãi mãi cùng vũ trụ. Trong vài trăm năm qua, thế giới đã thay đổi nhiều hơn bất kỳ thế kỷ nào trước đó. Nguyên nhân không phải là các thành tựu về kinh tế hay chính trị mà là sự phát triển vượt bậc về công nghệ được xây dựng trên nền khoa học cơ bản. Vậy thì ai xứng đáng là biểu tượng cho sự tiến bộ đó hơn Einstein? CHƯƠNG 2 HÌNH DÁNG CỦA THỜI GIAN Thuyết tương đối rộng của Einstein cho thời gian một hình dáng Nó có thể tích hợp với thuyết lượng tử như thế nào? Thời gian là gì? Một bài thánh ca nói: thời gian là một luồng chảy vô tận cuốn theo bao mơ ước của chúng ta. Nó có phải là một tuyến đường ray xe lửa hay không? Có thể thời gian có những vòng lặp và phân nhánh và nhờ đó chúng ta có thể đi tới và lại còn có thể quay lại một ga nào trước đó trên đường ray. (hình 2.1) Một tác giả thế kỷ 19 tên là Charles Lamb viết: “Không có gì làm tôi bối rối hơn thời gian và không gian, bởi vì tôi chưa bao giờ nghĩ về nó”. Hầu hết mọi người trong chúng ta chẳng mất thì giờ bận tâm về thời gian và không gian, chúng là gì cũng được, nhưng đôi lúc tất cả chúng ta tự hỏi thời gian là gì, nó bắt đầu thế nào và nó đang dẫn chúng ta về đâu. Theo tôi, bất kỳ một lý thuyết mang tính khoa học nào về thời gian hoặc về bất kỳ một khái niệm nào khác đều dựa trên một triết lý khoa học hiệu quả nhất: phương pháp thực chứng (positivism) do nhà triết học Karl Popper và cộng sự đưa ra. Theo phương pháp tư duy này thì một lý thuyết khoa học là một mô hình toán học mô tả và giải mã các quan sát mà chúng ta thu được. Một lý thuyết tốt sẽ mô tả được nhiều hiện tượng dựa trên một số ít các giả thiết và sẽ tiên đoán được các hiện tượng có thể kiểm chứng được. Nếu các tiên đoán phù hợp với thực nghiệm thì lý thuyết đó sẽ vượt qua được đợt kiểm chứng mặc dù có thể người ta không bao giờ chứng minh rằng lý thuyết đó là chính xác. Mặt khác, nếu các lý thuyết đó không phù hợp với các tiên đoán thì chúng ta cần loại bỏ hoặc sửa đổi lý thuyết (ít nhất đó là những điều cần xảy ra. Trên thực tế, người ta thường đặt câu hỏi về độ chính xác của các quan sát và khía cạnh đạo đức của những người thực hiện các quan sát đó). Nếu người ta đứng trên quan điểm thực chứng giống như tôi thì người ta không thế nói thực sự thời gian là gì. Tất cả những việc mà người ta có thể là mô tả các sự kiện đã được tìm ra phù hợp tốt với các mô hình toán học về thời gian và tiên đoán các sự kiện mới. Isaac Newton đã xuất bản mô hình toán học về không gian và thời gian cách đây đã 300 năm. Isaac Newton đã cho chúng ta mô hình toán học đầu tiên về thời gian và không gian trong cuốn Các nguyên lý toán học (Principia Mathematica), xuất bản năm 1687. Newton từng giữ ghế giáo sư Lucasian tại trường đại học Cambridge, vị trí mà tôi đang giữ hiện nay, mặc dù, lúc đó chiếc ghế của Newton không được điều khiển bằng điện như của tôi! Trong mô hình của Newton, thời gian và không gian là khung nền cho các sự kiện xảy ra và không gian và thời gian không làm ảnh hưởng đến các sự kiện xảy ra trong đó. Thời gian tách biệt khỏi không gian và được coi là đơn tuyến, hoặc được coi là đường ray tàu hỏa dài vô tận theo hai hướng (hình 2.2). Bản thân thời gian được xem là vĩnh cửu theo nghĩa nó đã tồn tại, và nó sẽ tồn tại mãi mãi. Nhưng ngược lại, phần lớn mọi người đều nghĩ rằng vũ trụ với trạng thái gần giống hiện tại được sáng tạo cách đây vài ngàn năm. Điều này làm các nhà triết học ví như Immanuel Kant, một nhà tư tưởng người Đức, trăn trở. Nếu thực sự vũ trụ được sáng tạo tại một thời điểm thì tại sao lại phải đợi một khoảng thời gian vô tận trước đó? Mặt khác, nếu vũ trụ tồn tại mãi mãi thì tại sao những sự kiện sẽ xảy ra trong tương lai lại không xảy ra trong quá khứ, ngụ ý lịch sử đã kết thúc? Đặc biệt là, tại sao vũ trụ lại không đạt đến trạng thái cân bằng nhiệt trong đó mọi vật đều có cùng nhiệt độ? Kant gọi vấn đề này là một “sự tự mâu thuẫn của lý tính thuần túy” (antinomy of pure reason), bởi vì dường như đó là một mâu thuẫn lô-gíc; nó không có lời giải. Nhưng nó chỉ là một mâu thuẫn trong bối cảnh của mô hình toán học của Newton, trong đó thời gian là một đường thẳng, độc lập với các sự kiện xảy ra trong vũ trụ. Tuy nhiên, như chúng ta đã thấy trong chương 1, Einstein đã đề xuất một mô hình toán học hoàn toàn mới: thuyết tương đối rộng. Kể từ khi bài báo của Einstein ra đời, chúng ta đã bổ sung một vài sửa đổi nhưng mô hình về không gian và thời gian vẫn dựa trên mô hình mà Einstein đã đề xuất. Chương này và các chương sau sẽ mô tả các tư tưởng của chúng ta đã phát triển như thế nào kể từ khi bài báo cách mạng của Einstein. Đó là câu chuyện về thành công của rất nhiều người, và tôi tự hào đã đóng góp một phần nhỏ công sức vào câu chuyện đó. Thuyết tương đối rộng đã kết hợp chiều thời gian với ba chiều của không gian để tạo thành cái gọi là không thời gian (spacetime - hình 2.3). Lý thuyết giải thích hiệu ứng hấp dẫn là sự phân bố của vật chất và năng lượng trong vũ trụ làm cong và biến dạng không thời gian, do đó không thời gian không phẳng. Các vật thể trong không thời gian cố gắng chuyển động theo các đường thẳng, nhưng vì không thời gian bị cong nên các quĩ đạo của chúng bị cong theo. Các vật thể chuyển động như thể chúng bị ảnh hưởng bởi trường hấp dẫn. (Hình 2.3) HÌNH DÁNG VÀ HƯỚNG CỦA THỜI GIAN Thuyết tương đối của Einstein - lý thuyết phù hợp với rất nhiều thực nghiệm - cho thấy rằng thời gian và không gian liên hệ chặt chẽ với nhau. Người ta không thể bẻ cong không gian mà không ảnh hưởng đến thời gian. Do đó, thời gian có một hình dáng. Tuy vậy, dường như nó chỉ có một hướng giống như các đầu máy xe lửa trong hình minh họa ở trên. Một cách hình dung thô thiển, không thời gian giống như một tấm cao su. Khi ta đặt một viên bi lớn tượng trưng cho mặt trời lên tấm cao su đó. Trọng lượng của viên bi sẽ kéo tấm cao su và làm cho nó bị cong gần mặt trời. Nếu bây giờ ta lăn các viên bi nhỏ lên tấm cao su đó thì chúng sẽ không lăn thẳng qua chỗ viên bi lớn mà thay vào đó chúng sẽ di chuyển xung quanh nó, giống như các hành tinh chuyển động xung quanh mặt trời. hình 2.4) (Hình 2.4) TẤM CAO SU VŨ TRỤ Hòn bi lớn ở trung tâm đại diện cho một vật thể nặng như là một ngôi sao. Khối lượng của nó làm cong tấm cao su ở xung quanh. Những hòn bi khác lăn trên tấm cao su sẽ bị ảnh hưởng bởi độ cong và chuyển động xung quanh hòn bi lớn, các hành tinh trong trường hấp dẫn của một ngôi sao cũng chuyển động xung quanh nó giống như trên. Sự hình dung đó không hoàn toàn đúng bởi vì chỉ một phần hai chiều của không gian bị bẻ cong, và thời gian không bị biến đổi giống như trong lý thuyết của Newton. Trong thuyết tương đối rộng, lý thuyết phù hợp với rất nhiều thực nghiệm, thời gian và không gian gắn liền với nhau. Người ta không thể làm cong không gian mà không làm biến đổi thời gian. Do đó thời gian có một hình dáng. Bằng cách làm cong không gian và thời gian, thuyết tương đối đã biến chúng từ khung nền thụ động mà trong đó các sự kiện xảy ra thành tác nhân năng động tham gia vào các sự kiện đó. Trong lý thuyết của Newton thời gian tồn tại độc lập với tất cả mọi sự vật khác, ta có thể hỏi: Chúa đã làm gì trước khi sáng tạo ra vũ trụ? Như thánh Augustin trả lời rằng, ta không nên nói đùa về điều đó, nếu có ai trót hỏi vậy thì ông trả lời “Ngài đã chuẩn bị địa ngục cho những kẻ quá tò mò”. Đó là một câu hỏi nghiêm túc mà con người suy nghĩ trong nhiều thế kỷ. Theo thánh Augustin, trước khi Chúa tạo thiên đường và trái đất, Ngài không làm gì cả. Thực ra ý tưởng này rất gần với các tư tưởng hiện đại. Thánh Augustine, nhà tư tưởng thế kỷ thứ năm cho rằng thời gian không tồn tại trước khi thế giới ra đời. Trong thuyết tương đối rộng, không thời gian và vũ trụ không tồn tại độc lập với nhau. Chúng được các định bằng các phép đo trong vũ trụ như là số các dao động của tinh thể thạnh anh trong đồng hồ hoặc chiều dài của một cái thước. Trong vũ trụ thời gian được định nghĩa như thế này cũng là điều dễ hiểu, nó cần có một giá trị bé nhất và lớn nhất - hay nói cách khác, có một sự khởi đầu và kết thúc. Việc hỏi cái gì đã xảy ra trước khi thời gian bắt đầu và cái gì sẽ xảy ra sau khi thời gian kết thúc là vô nghĩa vì lúc đó nó không được xác định. Việc xác định mô hình toán học của thuyết tương đối rộng tiên đoán vũ trụ và bản thân thời gian có bắt đầu hay kết thúc hay không hiển nhiên là một vấn đề quan trọng. Định kiến cho rằng thời gian là vô tận theo hai hướng là phổ biến đối với các nhà vật lý lý thuyết trong đó có Einstein. Mặt khác, có nhiều câu hỏi rắc rối về sự sáng thế, các câu hỏi này có vẻ nằm ngoài phạm vi nghiên cứu của khoa học. Trong các nghiệm của các phương trình của Einstein, thời gian có bắt đầu và có kết thúc, nhưng tất cả các nghiệm đó đều rất đặc biệt, có nhiều phép đối xứng. Người ta đã cho rằng, trong một vật thể đang suy sụp dưới lực hấp dẫn của chính bản thân nó, thì các áp lực hoặc các vận tốc biên (sideway) tránh cho vật chất không cùng nhau rơi vào một điểm mà ở đó mật độ vật chất sẽ trở nên vô hạn. Tương tự như thế, nếu người ta theo dõi sự dãn nở của vũ trụ trong quá khứ, người ta sẽ thấy rằng vật chất của vũ trụ không xuất phát từ một điểm có mật độ vô hạn. Một điểm có mật độ vô hạn như vậy được gọi là một điểm kỳ dị và nó là điểm khởi đầu và kết thúc của thời gian. Năm 1963, hai nhà khoa học người Nga là Evgenii Lifshitz and Isaac Khalatnikov khẳng định đã chứng minh tất cả các nghiệm của phương trình của Einstein cho thấy vật chất và vận tốc được sắp xếp một cách đặc biệt. Xác xuất để vũ trụ sắp xếp đặc biệt như thế gần như bằng không. Hầu hết tất cả các nghiệm biểu diễn trạng thái của vũ trụ đều tránh được điểm kỳ dị với mật độ vô hạn: trước pha giãn nở, vũ trụ cần phải có một pha co lại trong đó vật chất bị kéo vào nhau nhưng không va chạm với nhau sau đó rời nhau trong pha giãn nở hiện nay. Nếu đúng như thế thì thời gian liên tục mãi mãi từ vô tận trong quá khứ tới vô tận trong tương lai. Luận cứ của Lifshitz và Khalatnikov không thuyết phục được tất cả mọi người. Thay vào đó, Roger Penrose và tôi đã chấp nhận một cách tiếp cận khác không dựa trên nghiên cứu chi tiết các nghiệm của phương trình Einstein mà dựa trên một cấu trúc bao trùm của không thời gian. Trong thuyết tương đối, không thời gian không chỉ bị cong bởi khối lượng của các vật thể mà còn bị cong bởi năng lượng trong đó nữa. Năng lượng luôn luôn dương, do đó không thời gian bị uốn cong và bẻ cong hướng của các tia sáng lại gần nhau hơn. (Hình 2.5) NÓN ÁNH SÁNG QUÁ KHỨ CỦA CHÚNG TA Khi chúng ta nhìn các thiên hà xa xôi, chúng ta đang nhìn vũ trụ trong quá khứ vì ánh sáng chuyển động với vận tốc hữu hạn. Nếu chúng ta biểu diễn thời gian bằng trục thẳng đứng và hai trong ba chiều của không gian bằng trục nằm ngang thì những tia sáng đến với chúng ta ngày nay nằm ở đỉnh nón. Bây giờ chúng ta xem xét nón ánh sáng quá khứ (hình 2.5), đó là các đường trong không thời gian mà các tia sáng từ các thiên hà xa xôi đi đến chúng ta hôm nay. Trong giản đồ thể hiện nón áng sáng, thời gian được biểu diễn bằng phương thẳng đứng và không gian được biểu diễn bằng phương nằm ngang, vị trí của chúng ta trong đó là ở đỉnh của nón áng sáng đó. Khi chúng ta đi về quá khứ, tức là đi từ đỉnh xuống phía dưới của nón, chúng ta sẽ thấy các thiên hà tại các thời điểm rất sớm của vũ trụ. Vì vũ trụ đang giãn nở và tất cả mọi thứ đã từng ở rất gần nhau, nên khi chúng ta nhìn xa hơn về quá khứ thì chúng ta đang nhìn lại vùng không gian có mật độ vật chất lớn hơn. Chúng ta quan sát thấy một phông bức xạ vi sóng (microwave background) lan tới chúng ta dọc theo nón ánh sáng quá khứ từ các thời điểm rất xa xưa khi mà vũ trụ rất đặc, rất nóng hơn bây giờ. Bằng cách điều khiển các máy đo về các tần số vi sóng khác nhau, chúng ta có thể đo được phổ của bức xạ này (sự phân bố của năng lượng theo tần số). Chúng ta đã tìm thấy một phổ đặc trưng cho bức xạ từ một vật thể với nhiệt độ 2,7 độ K. Bức xạ vi sóng này không đủ mạnh để làm nóng chiếc bánh piza, nhưng phổ này phù hợp một cách chính xác với phổ của bức xạ từ một vật có nhiệt độ 2,7 độ K, điều đó nói với chúng ta rằng bức xạ cần phải đến từ các vùng có vật chất làm tán xạ vi sóng. (hình 2.6) (Hình 2.6) KẾT QUẢ PHÉP ĐO PHỔ PHÔNG VI SÓNG Phổ (phân bố cường độ theo tần số) của bức xạ phông vi sóng giống phổ phát ra từ một vật nóng. Đối với bức xạ trong trạng thái cân bằng nhiệt, vật chất làm tán xạ bức xạ đó nhiều lần. Điều này cho thấy rằng có đủ một lượng vật chất trong nón ánh sáng quá khứ để bẻ cong ánh sáng. Do đó chúng ta có thể kết luận rằng nón ánh sáng quá khứ của chúng ta cần phải vượt qua một lượng vật chất khi người ta đi ngược lại thời gian. Lượng vật chất này đủ để làm cong không thời gian, do đó các tia sáng trong nón ánh sáng quá khứ của chúng ta bị bẻ cong vào với nhau. (hình 2.7) (Hình 2.7) LÀM CONG KHÔNG THỜI GIAN Vì lực hấp dẫn là lực hút nên vật chất luôn làm cong không thời gian sao cho các tia sáng bị bẻ cong lại với nhau. Khi chúng ta đi ngược lại thời gian, các mặt cắt của nón ánh sáng quá khứ đạt đến một kích thước cực đại và sau đó lại trở lên nhỏ hơn. Quá khứ của chúng ta có hình quả lê. (hình 2.8) (Hình 2.8) THỜI GIAN CÓ HÌNH QUẢ LÊ Nếu ta đi theo nón ánh sáng về quá khứ thì chiếc nón này bị bẻ cong do vật chất ở những giai đoạn rất sớm của vũ trụ. Toàn bộ vũ trụ mà chúng ta quan sát nằm trong một vùng mà biên của nó nhỏ lại bằng không tại thời điểm vụ nổ lớn. Đây có thể là một điểm kỳ dị, ở đó mật độ vật chất lớn vô hạn và thuyết tương đối cổ điển không còn đúng nữa. Khi ta tiếp tục đi theo nón ánh sáng về quá khứ thì mật độ vật chất năng lượng dương sẽ làm cho các tia sáng bị bẻ cong vào với nhau mạnh hơn nữa. Mặt cắt của nón ánh sáng sẽ co lại về 0 tại một thời điểm hữu hạn. Điều này có nghĩa là tất cả vật chất trong nón ánh sáng quá khứ của chúng ta bị bẫy trong một vùng không thời gian mà biên của nó co lại về 0. Do đó, không ngạc nhiên khi Penrose và tôi có thể chứng minh bằng các mô hình toán học của thuyết tương đối rộng rằng thời gian cần phải có một thời điểm bắt đầu được gọi là vụ nổ lớn. Lý luận tương tự cho thấy thời gian cũng có điểm kết thúc khi các ngôi sao hoặc các thiên hà suy sập dưới lực hấp dẫn của bản thân chúng để tạo thành các hố đen. Bây giờ chúng ta phải quay lại một giả thuyết ngầm của Kant về sự tự mâu thuẫn của lý tính thuần túy mà theo đó thời gian là một thuộc tính của vũ trụ. Bài tiểu luận của chúng tôi chứng minh thời gian có một điểm khởi đầu đã đạt giải nhì trong một cuộc thi do Quỹ nghiên cứu về hấp dẫn tài trợ vào năm 1968. Roger và tôi cùng chia nhau số tiền thưởng 300 USD. Tôi không nghĩ rằng vào năm đó các bài luận đạt giải khác có giá trị lâu dài hơn bài của chúng tôi. Đã có rất nhiều những phản ứng khác nhau về công trình của chúng tôi. Công trình của chúng tôi làm buồn lòng nhiều nhà vật lý, nhưng nó lại làm hài lòng các nhà lãnh đạo tôn giáo, những người tin vào hành vi sáng thế và cho đây là một minh chứng khoa học. Trong khi đó, Lifshitz và Khalatnikov đang ở trong một tình trạng rất khó xử. Họ không thể tranh luận với các định lý toán học mà chúng tôi đã chứng minh, nhưng dưới hệ thống Xô Viết họ không thể chấp nhận là họ đã sai và khoa học phương Tây đã đúng. Tuy vậy, họ đã thoát được tình trạng đó bằng cách tìm ra một họ nghiệm với một điểm kỳ dị tổng quát hơn, những nghiệm này cũng không đặc biệt hơn các nghiệm trước đó mà họ đã tìm ra. Điều này cho phép họ khẳng định các kỳ dị và sự khởi đầu hoặc kết thúc của thời gian là phát minh của những người Xô Viết. Phần lớn các nhà vật lý đều cảm thấy không thích ý tưởng về sự khởi đầu và kết thúc của thời gian. Do đó, họ chỉ ra rằng các mô hình toán học sẽ không mô tả tốt không thời gian gần điểm điểm kỳ dị. Lý do là thuyết tương đối rộng mô tả lực hấp dẫn là một lý thuyết cổ điển và không tích hợp với nguyên lý bất định của lý thuyết lượng tử điểu khiển các lực khác mà chúng ta biết. Sự mâu thuẫn này không quan trọng đối với phần lớn vũ trụ và thời gian vì không thời gian bị bẻ cong trên một phạm vi rất lớn còn các hiệu ứng lượng tử chỉ quan trọng trên phạm vi rất nhỏ. Nhưng ở gần một điểm kỳ dị, hai phạm vi này gần bằng nhau và các hiệu ứng hấp dẫn lượng tử (quantum gravity) sẽ trở lên quan trọng. Do đó các định lý về điểm kỳ dị do Penrose và tôi thiết lập là vùng không thời gian cổ điển của chúng ta liên hệ với quá khứ và có thể là cả tương lai nữa bởi các vùng không thời gian mà ở đó hấp dẫn lượng tử đóng vai trò quan trọng. Để hiểu nguồn gốc và số phận của vũ trụ, chúng ta cần một lý thuyết lượng tử về hấp dẫn (quantum theory of gravity), và đây sẽ là chủ đề của phần lớn cuốn sách này. Một bước tiến quan trọng trong thuyết lượng tử là đề xuất của Max Plank vào năm 1900 là ánh sáng truyền đi với từng bó nhỏ gọi là lượng tử. Mặc dù giả thuyết lượng tử của Plank giải thích rất tốt tốc độ bức xạ của các vật nóng nhưng phải đến tận giữa những năm 1920 khi nhà vật lý người Đức Werner Heisenberg tìm ra nguyên lý bất định nổi tiếng của ông thì người ta mới nhận thấy hết ý nghĩa của nó. Theo Heisenberg thì giả thuyết của Plank ngụ ý rằng nếu ta muốn đo vị trí của hạt càng chính xác bao nhiêu thì phép đo vận tốc càng kém chính xác bấy nhiêu và ngược lại. Nói chính xác hơn, Heisenberg chứng minh rằng độ bất định về vị trí của hạt nhân với độ bất định về mô men của nó luôn lớn hơn hằng số Plank - một đại lượng liên hệ chặt chẽ với năng lượng của một lượng tử ánh sáng. Lý thuyết lượng tử của các hệ như nguyên tử với một số lượng hữu hạn các hạt đã được xây dựng vào những năm 1920 do công của Heisenberg, Schrodinger, và Dirac (Dirac cũng là một người từng giữ chế mà hiện nay tôi đang giữ, nhưng đó không phải là chiếc ghế tự động!). Mặc dù vậy, con người vẫn gặp khó khăn khi cố gắng mở rộng ý tưởng lượng tử vào trường điện, từ, và ánh sáng của Maxwell. TRƯỜNG MAXWELL Năm 1865, nhà vật lý người Anh Clerk Maxwell đã kết hợp các định luật điện và từ đã biết. Lý thuyết của Maxwell dựa trên sự tồn tại của các “trường”, các trường truyền tác động từ nơi này đến nơi khác. Ông nhận thấy rằng các trường truyền nhiễu loạn điện và từ là các thực thể động: chúng có thể dao động và truyền trong không gian. Tổng hợp điện từ của Maxwell có thể gộp lại vào hai phương trình mô tả động học của các trường này. Chính ông cũng đi đến một kết luận tuyệt vời: tất cả các sóng điện từ với tất cả các tần số đều truyền trong không gian với một vận tốc không đổi - vận tốc ánh sáng. Ta có thể xem trường của Maxwell tạo thành từ các sóng với các bước sóng (khoảng cách giữa hai đỉnh sóng) khác nhau. Trong một sóng, trường đó sẽ dao động từ giá trị này đến giá trị khác giống như một con lắc. (hình 2.9) (Hình 2.9) SÓNG LAN TRUYỀN VỚI CON LẮC DAO ĐỘNG Bức xạ điện từ lan truyền trong không gian giống như một sóng với điện trường và từ trường dao động giống như một con lắc và hướng truyền thì vuông góc với hướng chuyển động của sóng. Bức xạ cũng có thể được tạo thành từ nhiều trường với các bước sóng khác nhau. Theo lý thuyết lượng tử, trạng thái cơ bản hay trạng thái năng lượng thấp nhất của con quay không chỉ là điểm năng lượng thấp nhất hướng thẳng từ trên xuống. Vị trí đó có vị trí và vận tốc xác định là bằng không. Điều này vi phạm nguyên lý loại trừ, nguyên lý không cho phép đo một cách chính xác vị trí và vận tốc tại một thời điểm. Độ bất định về vị trí nhân với độ bất định về mô men cần phải lớn hơn một đại lượng xác định được biết với cái tên là hằng số Plank - một con số nếu viết ra sẽ rất dài, do đó chúng ra dùng một biểu tượng cho nó: ħ. Do đó, năng lượng của con quay ở trạng thái cơ bản hay trạng thái có năng lượng cực tiểu không phải bằng không như người ta trông đợi. Thay vào đó, ngay cả ở trạng thái cơ bản của nó, một con quay hay bất kỳ một hệ dao động nào cũng có một lượng năng lượng cực tiểu nhất định của cái mà ta gọi là thăng giáng điểm không (zero point fluctuation). Điều này có nghĩa là con quay không nhất thiết phải nằm theo hướng thẳng từ trên xuống mà nó sẽ làm với phương thẳng đứng một góc nhỏ với một xác xuất nhất định (hình 2.10). Tương tự như vậy, ngay cả trong chân không hoặc trạng thái năng lượng thấp nhất, các sóng trong trường Maxwell sẽ không bằng không mà có thể có một giá trị nhỏ nào đó. Tần số (số dao động trong một phút) của con quay hay sóng càng lớn thì năng lượng trạng thái cơ bản càng lớn. (Hình 2.10) CON LẮC VÀ PHÂN BỐ XÁC SUẤT Theo nguyên lý bất định Heisenberg, con lắc không thể hướng thẳng đứng tuyệt đối từ trên xuống dưới với vận tốc bằng không được. Thay vào đó, cơ học lượng tử cho thấy rằng, ngay cả ở trạng thái năng lượng thấp nhất con lắc cũng có một lượng thăng giáng cực tiểu. Điều này có nghĩa là vị trí của con lắc sẽ được cho bởi một phân bố xác suất. Ở trạng thái cơ bản, trạng thái khả dĩ nhất là hướng thẳng từ trên xuống, nhưng cũng có xác suất tìm thấy con lắc làm một góc nhỏ với phương thẳng đứng. Các tính toán thăng giáng trạng thái cơ bản trong trường Maxwell cho thấy khối lượng và điện tích biểu kiến của điện tử lớn vô cùng, điều này không phù hợp với các quan sát. Tuy vậy, vào những năm 1940, các nhà vật lý Richard Feynman, Julian Schwinger và Shinichiro Tomonaga đã phát triển một phương pháp chặt chẽ để loại bỏ giá trị vô hạn và thu được giá trị hữu hạn của khối lượng và điện tích giống như quan sát. Tuy nhiên, các thăng giáng trạng thái cơ bản vẫn gây các hiệu ứng nhỏ có thể đo được và phù hợp với thực nghiệm. Các sơ đồ loại trừ các giá trị lớn vô hạn tương tự cũng đúng đối với các trường Yang-Mills trong lý thuyết do Chen Ning Yang (Yang Chen Ning - Dương Chấn Ninh) và Robert Mills xây dựng. Lý thuyết Yang-Mills là mở rộng của lý thuyết Maxwell để mô tả tương tác của hai lực khác gọi là lực hạt nhân yếu và lực hạt nhân mạnh. Tuy vậy các thăng giáng trạng thái cơ bản có hiệu ứng đáng kể hơn trong lý thuyết lượng tử về hấp dẫn. Lại nữa, một bước sóng có một năng lượng trạng thái cơ bản. Vì bước sóng của trường Maxwell có thể nhỏ bao nhiêu cũng được nên có một số vô hạn các bước sóng khác nhau và một số vô hạn các năng lượng trạng thái cơ bản trong bất kỳ vùng nào của không thời gian. Vì mật độ năng lượng cũng giống như vật chất là nguồn gốc của hấp dẫn nên mật độ năng lượng vô hạn này có nghĩa là có đủ lực hút hấp dẫn trong vũ trụ để làm cong không thời gian thành một điểm mà điều đó rõ ràng là đã không xảy ra. Người ta cũng có thể hy vọng giải quyết bài toán có vẻ mâu thuẫn giữa lý thuyết và thực nghiệm này bằng cách cho rằng các thăng giáng trạng thái cơ bản không có hiệu ứng hấp dẫn, nhưng giả thiết này không đúng. Người ta có thể ghi nhận năng lượng của thăng giáng trạng thái cơ bản bằng hiệu ứng Casimir. Nếu bạn đặt hai tấm kim loại song song với nhau và rất gần nhau thì sự có mặt của hai tấm kim loại sẽ làm giảm số các bước sóng có thể khớp giữa hai tấm kim loại so với số các bước sóng ở bên ngoài hai tấm một chút ít. Điều này có nghĩa là mật độ năng lượng của thăng giáng trạng thái cơ bản giữa hai tấm, mặc dù vẫn là vô hạn, vẫn nhỏ hơn mật độ năng lượng ở bên ngoài hai tấm một lượng hữu hạn (hình 2.11). Sự khác biệt về mật độ năng lượng này làm xuất hiện một lực kéo hai tấm kim loại vào với nhau và lực này đã được quan sát bằng thực nghiệm. Trong thuyết tương đối, giống như vật chất các lực gây cũng nên hấp dẫn, do đó, chúng ta không thể bỏ qua hiệu ứng hấp dẫn của sự khác biệt về năng lượng này. (Hình 2.11) HIỆU ỨNG CASIMIR Sự tồn tại của thăng giáng trạng thái cơ bản được khẳng định bằng thực nghiêm thông qua hiệu ứng Casimir về sự có mặt của một lực nhỏ giữa hai tấm kim loại song song. Một nghiệm khác của bài toán mà có thể đòi hỏi có một hằng số vũ trụ giống như Einstein đã đưa ra để có được mô hình vũ trụ tĩnh. Nếu hằng số này có giá trị âm vô cùng thì nó có thể loại trừ chính xác giá trị dương vô cùng của năng lượng trạng thái cơ bản trong không gian tự do, nhưng hằng số này có vẻ như không được dự tính trước (ad hoc) và nó có thể được điều chỉnh một cách cực kỳ chính xác. Thật may mắn, người ta đã phát hiện một loại đối xứng hoàn toàn mới vào những năm 1970, nó cung cấp một cơ chế vật lý tự nhiên để loại trừ các giá trị vô hạn xuất hiện từ thăng giáng trạng thái cơ bản. Siêu đối xứng là một đặc điểm của các mô hình toán học hiện đại của chúng ta mà có thể được mô tả theo nhiều cách. Một trong những cách đó nói rằng không thời gian có thêm các chiều khác bên cạnh các chiều mà chúng ta đang trải nhiệm. Những chiều này được gọi là những chiều Grassmann bởi vì chúng được đo bằng các con số được gọi là các biến số Grassmann chứ không phái là những con số thực bình thường. Các số bình thường giao hoán với nhau; tức là; bạn có thể nhân chúng theo một trật tự nào cũng được: 6 nhân với 4 cũng bằng 4 nhân với 6. Nhưng những biến Grassmann thì lại phản giao hoán (anticommute) với nhau: x nhân với y bằng -y nhân với x. Lần đầu tiên, siêu đối xứng được nghiên cứu khi loại trừ các giá trị vô hạn trong các trường vật chất và trường Yan-Mills trong không thời gian ở đó cả các chiều số thực và các chiều Grassmann đều phẳng, không bị cong. Việc mở rộng siêu đối xứng vào các chiều số thực và chiều Grassmann khi các chiểu này bị uốn cong là một điều rất tự nhiên. Sự mở rộng này dẫn đến một số các lý thuyết được gọi là siêu hấp dẫn (supergravity) với số lượng các đối xứng khác nhau. Một hệ quả của siêu đối xứng là mỗi trường hoặc mỗi hạt đều có một siêu đối tác (superpartner) có spin lớn hơn hoặc nhỏ hơn spin của nó ½. (hình 2.12) (Hình 2.12) SPIN Tất cả các hạt có một tính chất gọi là spin, tác dụng của spin là làm cho các hạt được thấy như nhìn từ các hướng khác nhau. Người ta có thể minh họa điều này bằng một bộ bài. Trước tiên hãy xem con át pích, nếu bạn quay đúng một vòng hay 360 độ thì bạn sẽ thấy nó giống như trước khi quay. Do đó, con át pích có spin bằng 1. Ngược lại, con qui cơ có hai đầu. Nếu bạn quay một nửa vòng hay 180 độ bạn sẽ thấy nó giống như ban đầu. Con qui cơ có spin bằng hai. Tương tự, ta có thể tưởng tượng các vật thể có spin bằng 3 hoặc nhiều hơn nếu hình dáng của nó giống như ban đầu khi quay một phần nhỏ hơn của một vòng quay. Spin càng cao thì góc quay để vật thể có hình dáng ban đầu càng nhỏ. Nhưng có một điều đáng chú ý là có các hạt mà hình dáng của chúng giống như ban đầu chỉ khi bạn quay đủ hai vòng. Người ta gọi những hạt như vậy có spin bằng 1/2. Năng lượng trạng thái cơ bản của các hạt boson, trường có spin là một số nguyên (0, 1, 2, v.v.), là dương. Ngược lại năng lượng trạng thái cơ bản của các hạt fermion, trường có spin bán nguyên (1/2, 3/2, v.v.), là âm. Vì có một lượng lớn các hạt boson và fermion bằng nhau, các giá trị vô hạn lớn nhất triệt tiêu nhau trong các lý thuyết siêu hấp dẫn. (hình 2.13) (Hình 2.13) SIÊU ĐỐI TÁC Tất cả các hạt trong vũ trụ đều thuộc một trong hai nhóm: Fermion hoặc Boson. Hạt Fermion là các hạt có spin bán nguyên (như là 1/2) tạo nên vật chất thường. Năng lượng trạng thái cơ bản của chúng là âm. Hạt Boson là những hạt có spin nguyên (ví dụ: 0, 1, 2) làm tăng lực xuất hiện giữa các hạt Fermion như là lực hấp dẫn và ánh sáng chẳng hạn. Năng lượng trạng thái cơ bản của chúng là dương. Thuyết siêu hấp dẫn giả thuyết rằng tất cả các hạt Fermion và Boson đều có một siêu đối tác có spin lớn hơn hoặc nhỏ hơn spin của hạt đó 1/2. Ví dụ một photon (là hạt boson) có spin là 1, năng lượng trạng thái cơ bản là dương. Siêu đối tác của photon là photion có spin bằng 1/2 là một fermion. Do đó năng lượng trạng thái cơ bản là âm. Trong sơ đồ siêu hấp dẫn này, chúng ta sẽ có số các hạt fermion và boson bằng nhau. Năng lượng trạng thái cơ bản của các hạt boson làm nghiêng cán cân về phía dương và năng lượng trạng thái cơ bản của các hạt fermion làm nghiêng cán cân về phía năng lượng âm, năng lượng trạng thái cơ bản sẽ triệt tiêu lẫn nhau và loại bỏ giá trị lớn vô hạn. Vẫn còn lại xác xuất để có giá trị vô hạn mặc dù rất nhỏ nhưng vẫn tồn tại. Không ai có đủ sự kiên nhẫn cần thiết để tính toán xem các lý thuyết này có thực sự là hoàn toàn hữu hạn hay không. Người ta tính rằng đề làm điều đó một sinh viên giỏi phải mất 200 năm, và làm sao bạn có biết sinh viên đó không phạm phải sai lầm ngay ở trang thứ hai? Đến năm 1985, phần lớn mọi người vẫn tin rằng hầu hết các lý thuyết siêu hấp dẫn siêu đối xứng (supersymetric) không có chứa các giá trị vô hạn. Sau đó thì đột nhiên mốt đó thay đổi. Người ta tuyên bố rằng không có lý do gì để không trông đợi các giá trị vô hạn trong các lý thuyết siêu hấp dẫn, điều này có ngụ ý rằng các lý thuyết siêu hấp dẫn đó cũng có các sai lầm chết người như các lý thuyết khác. Thay vào đó, người ta quả quyết rằng một lý thuyết được gọi là lý thuyết dây siêu đối xứng là cách duy nhất để kết hợp lý thuyết hấp dẫn và lý thuyết lượng tử. Các dây, giống như các dây trong kinh nghiệm hàng ngày, là các vật thể một chiều. Chúng chỉ có chiều dài. Các dây trong lý thuyết dây chuyển động trong không thời gian. Các sự dao động của dây thể hiện cho các hạt. (hình 2.14) (Hình 2.14) DAO ĐỘNG CỦA DÂY Trong lý thuyết dây, các thực thể cơ bản không phải là các hạt chiếm một điểm trong không gian mà là các dây một chiều. Các dây này có các đầu khác nhau hoặc các đầu đó có thể nối với nhau để tạo thành các vòng dây. Giống như các sợi dây của đàn violon, các dây trong lý thuyết dây có các kiểu dao động hoặc tần số cộng hưởng nhất định, bước sóng của các kiểu dao động này trùng khớp chính xác với khoảng cách giữa hai đầu dây. Nhưng trong khi các tần số cộng hưởng của dây đàn khác nhau tạo nên các nốt nhạc khác nhau thì dao động cộng hưởng của một dây sẽ tạo ra khối lượng, lực khác nhau - những thực thể được giải thích là các hạt cơ bản. Nói nôm na là bước sóng dao động của dây càng nhỏ thì khối lượng của hạt càng lớn. Nếu các dây này có các chiều Grassmann và các chiều số thường thì các dao động sẽ tương ứng với các hạt boson và fermion. Trong trường hợp này, năng lượng trạng thái cơ bản âm và dương triệt tiêu một cách chính xác đến nỗi sẽ hoàn toàn không có các giá trị vô hạn. Các siêu dây (superstring) được gọi là lý thuyết về mọi thứ (theory of everything). Các nhà viết lịch sử khoa học trong tương lai sẽ thấy rất thú vị khi lập biểu đồ biểu diễn xu hướng thay đổi tư tưởng của các nhà vật lý lý thuyết. Chỉ trong vài năm, lý thuyết dây đã ngự trị tuyệt đối và thuyết siêu hấp dẫn bị giáng xuống thành một lý thuyết gần đúng, chỉ phù hợp ở năng lượng thấp. Đại lượng “năng lượng thấp” bị coi như một sự chê bai, dù là trong ngữ cảnh này các năng lượng thấp ngụ ý các hạt với năng lượng nhỏ hơn hàng tỷ tỷ lần so với các hạt trong một vụ nổ TNT. Nếu siêu hấp dẫn chỉ là một phép gần đúng năng lượng thấp thì nó không thể là lý thuyết cơ bản cho vũ trụ được. Mà thay vào đó, lý cơ bản được đề xuất có thể là một trong năm lý thuyết siêu dây. Nhưng lý thuyết nào trong năm lý thuyết siêu dây mô tả vũ trụ của chúng ta? Và thuyết dây sẽ được phát biểu như thế nào để vượt qua được phép gần đúng trong đó các dây được mô tả như là các mặt với một chiều không gian và một chiều thời gian dao động trong một phông không thời gian phẳng. Liệu các dây có làm cong phông không thời gian hay không? Vào những năm sau 1985, người ta dần nhận thấy rằng, thuyết dây không phải là một bức tranh hoàn hảo. Khởi đầu là việc người ta nhận ra rằng các dây chỉ là một thành phần của một lớp các thực thể bao quát hơn, các thực thể này có thể được mở rộng vào nhiều hơn một chiều. Paul Townsend, một người cũng là thành viên của khoa Toán ứng dụng và Vật lý lý thuyết giống như tôi ở Đại học Cambridge, một người đã thực hiện nhiều công trình cơ bản về các thực thể này, đặt cho chúng một cái tên là các “màng-p” (p brane). Một màng-p có chiều dài theo p hướng. Do đó, màng có p=1 là một dây, màng có p=2 là một mặt hay một màng bình thường, và v.v. (hình 2.15). Các màng với p=1 trong trường hợp của các dây có vẻ như không được ưu tiên hơn so với các giá trị có thể khác của p. Thay vào đó, chúng ta thông qua một nguyên tắc dân chủ cho các màng-p: tất cả các màng-p sinh ra đều có quyền bình đẳng. (Hình 2.15) MÀNG-P Các màng-p là các thực thể kéo dài theo p chiều. Trường hợp đặc biệt là các dây với p=1 và các tấm với p=2, nhưng các giá trị khả dĩ của p có thể lớn hơn tới 10 hoặc 11 chiều. Nhưng thường thì một số hoặc tất cả p chiều đó bị cuộn lại giống như những vòng xuyến. Chúng ta tin một sự thật hiển nhiên là tất cả các màng-p sinh ra đều có quyền bình đẳng. Tất cả các màng-p đều được tìm thấy là nghiệm của các phương trình trong thuyết siêu hấp dẫn với 10 hoặc 11 chiều. 10 hoặc 11 chiều có vẻ như không giống không thời gian mà chúng ta đang trải nghiệm nhưng ý tưởng là 6 hoặc 7 chiều trong số các chiều đó bị cuộn lại nhỏ đến nỗi ta không thể thấy chúng, chúng ta chỉ có thể nhận ra 4 chiều lớn và gần như phẳng còn lại mà thôi. Với tư cách cá nhân mà nói, tôi rất miễn cưỡng khi tin vào các chiều bổ sung. Nhưng vì tôi là một người theo chủ nghĩa thực chứng nên câu hỏi “Các chiều bố sung có thực sự tồn tại hay không?” không có ý nghĩa gì cả. Tất cả những điều mà người ta có thể hỏi đó là mô hình toán học với các chiều bổ sung đó có mô tả tốt vũ trụ của chúng ta hay không. Chúng ta vẫn chưa có quan sát nào mà để giải thích nó người ta cần đến các chiều bổ sung. Tuy vậy, chúng ta có thể có cơ hội quan sát chúng trong máy va chạm Hadron (Large Hadron Collider) ở Geneva. Nhưng điều đã thuyết phục nhiều người trong đó có tôi nghiêm túc chọn các mô hình với các chiều bố sung là có một mớ các mối liên hệ không ngờ được gọi là tính đối ngẫu (duality) giữa các mô hình. Tính đối ngẫu này cho thấy rằng tất cả các mô hình đều tương đương; tức là, chúng chỉ là những khía cạnh khác nhau của cùng một lý thuyết cơ bản được gọi với cái tên là thuyết-M (M-theory). Nếu không lấy tính đối ngẫu làm dấu hiệu cho thấy chúng ta đi đúng hướng thì điều đó cũng gần giống như cho rằng Chúa đã đặt các hóa thạch vào trong đá để làm Darwin nhầm lẫn về sự tiến hóa của cuộc sống. Paul Townsend, chuyên gia về màng-p Tính đối ngẫu cho thấy rằng cả 5 lý thuyết siêu dây đều mô tả các bản chất vật lý giống nhau và chúng cho thấy rằng về mặt vật lý chúng cũng tương đương với lý thuyết siêu hấp dẫn (hình 2.16). Ta không thể nói rằng các siêu dây cơ bản hơn siêu hấp dẫn hoặc ngược lại. Đúng hơn, chúng chỉ là những biểu diễn khác nhau của cùng một lý thuyết cơ bản, mỗi lý thuyết đều tính toán một cách hiệu quả trong các tình huống khác nhau. Vì các lý thuyết dây không có chứa các giá trị vô hạn, chúng được dùng để tính các kết quả có thể xảy ra khi một số ít các hạt năng lượng cao va chạm và tán xạ với nhau. Tuy vậy chúng không hay được sử dụng để mô tả năng lượng của một số lớn các hạt làm cong vũ trụ như thể nào hoặc hình thành các trạng thái bị trói buộc (bound state), giống như một hố đen, ra sao. Với các trường hợp này, người ta cần đến thuyết siêu hấp dẫn, về cơ bản lý thuyết này dựa trên lý thuyết Einstein về không thời gian cong với một số loại vật chất bổ sung. Đây chính là bức tranh tôi sẽ dùng chủ yếu trong các phần sau. (Hình 2.16) MÔ HÌNH THỐNG NHẤT Có một mạng lưới các mối liên hệ được gọi là tính đối ngẫu kết nối năm lý thuyết dây và siêu hấp dẫn mười một chiều. Tính đối ngẫu cho thấy rằng các lý thuyết dây khác nhau chỉ là những biểu diễn khác nhau của một lý thuyết cơ bản được gọi là thuyết-M. Trước thập niên 90 người ta cho rằng 5 lý thuyết dây là các lý thuyết riêng biệt và hoàn toàn không liên hệ với nhau. Thuyết-M thống nhất 5 lý thuyết dây vào một mô hình lý thuyết duy nhất, nhưng người ta vẫn chưa hiểu rất nhiều tính chất của mô hình này. Thuyết-M thống nhất 5 lý thuyết dây thành một lý thuyết cơ bản duy nhất, nhưng người ta vẫn chưa hiểu rất nhiều tính chất của lý thuyết này. Để mô tả lý thuyết lượng tử tạo hình dáng cho không thời gian như thế nào, việc đưa ý tưởng thời gian ảo sẽ rất hiệu quả. Thời gian ảo nghe có vẻ như một cái gì đó đến từ những câu chuyện viễn tưởng khoa học, nhưng nó là một khái niệm toán học được định nghĩa rất rõ ràng: thời gian được đo bằng các số mà ta gọi là các số ảo. Ta có thể nghĩ về các số thực bình thường như các số 1, 2, -3,5, v. v. tương ứng với các vị trí trên một đường thẳng kéo dài từ trái sang phải: điểm 0 ở giữa, các số thực dương nằm ở bên phải và các số thực âm nằm ở bên trái. (hình 2.17) (Hình 2.17) Ta có thể xây dựng một mô hình trong đó trục thời gian ảo nằm vuông góc với trục thời gian thực. Các qui tắc của mô hình này sẽ xác định lịch sử thời gian ảo dựa theo thời gian thực và ngược lại. Các số ảo có thể được biểu diễn là các vị trí nằm trên một đường thẳng vuông góc: điểm 0 vẫn nằm ở giữa, các số ảo dương nằm ở phía trên và các số ảo âm được vẽ ở phía dưới. Do đó, các số ảo có thể được coi như một loại số mới nằm vuông góc với các số thực bình thường. Vì chúng là các thành phần toán học nên chúng không cần phải tương ứng với thực tại vật lý nào; chúng ta không thể có một số ảo các quả cam hoặc một hóa đơn điện thoại ảo được. (hình 2.18) (Hình 2.18) Số ảo là một khái niệm toán học. Bạn không thể có một hóa đơn thẻ tín dụng ảo. Người ta có thể nghĩ điều này ngụ ý rằng các số ảo chỉ là một trò chơi toán học mà chẳng có gì liên quan đến thực tại. Tuy vậy, trên quan điểm triết học thực chứng, người ta không thể định nghĩa thực tại là gì. Tất cả những điều mà người ta có thể làm là tìm ra mô hình toán học nào là mô hình mô tả vũ trụ mà chúng ta đang sống. Hóa ra là một mô hình toán học có chứa thời gian ảo không chỉ tiên đoán các hiệu ứng mà chúng ta đã quan sát được mà còn tiên đoán cả những hiệu ứng mà chúng ta vẫn chưa thể đo được. Tuy chưa đo được nhưng vì các lý do khác mà chúng ta vẫn tin vào các hiệu ứng đó. Vậy thì thực tại là gì và ảo ảnh là gì? Liệu sự khác biệt giữa chúng chỉ có ở trong đầu óc của chúng ta hay không? Lý thuyết tương đối rộng cổ điển (tức là không có tính lượng tử) của Einstein đã kết hợp thời gian thực và ba chiều khác của không gian thành một không thời gian bốn chiều. Nhưng chiều thời gian thực vẫn khác biệt với ba chiều của không gian. Vũ trụ tuyến (world line) hay lịch sử của người quan sát luôn tăng theo thời gian thực (tức là thời gian luôn chuyển động từ quá khứ đến tương lai), nhưng vũ trụ tuyến lại có thể tăng hoặc giảm theo bất kỳ chiều nào của không gian. Nói cách khác, người ta chỉ có thể quay ngược lại trong không gian chứ không thể quay ngược lại trong thời gian. (hình 2.19) (Hình 2.19) Trong không thời gian của thuyết tương đối rộng cổ điển, thời gian khác biệt với các hướng của không gian vì nó chỉ tăng theo lịch sử của người quan sát chứ không giống như các chiều của không gian có thể tăng hoặc giảm theo lịch sử đó. Ngược lại, hướng của thời gian ảo giống như một trục không gian, có thể tăng hoặc giảm. Mặt khác, vì thời gian ảo vuông góc với thời gian thực, nên thời gian hành xử như một trục không gian thứ tư. Do vậy, thời gian này có rất nhiều sự kiện có thể xảy ra hơn đường ray xe lửa của thời gian thực (thời gian thực chỉ có một điểm khởi đầu hoặc kết thúc hoặc đi thành các đường vòng). Với ý nghĩa ảo này, thời gian có một hình dáng. Để thấy các sự kiện có thể xảy ra, hãy coi không thời gian ảo như một quả cầu, giống như bề mặt trái đất. Giả thiết rằng thời gian ảo là độ của các đường vĩ tuyến (hình 2.20). Khi ấy lịch sử của vũ trụ trong thời gian ảo sẽ bắt đầu tại Nam Cực. Câu hỏi “Cái gì đã xảy ra trước khi vũ trụ hình thành?” sẽ trở nên vô nghĩa. Đơn giản là thời gian trước khi vũ trụ hình thành không được định nghĩa, giống như không có điểm nào nằm ở phía nam của Nam Cực. Nam Cực là một điểm hoàn toàn bình thường trên bề mặt trái đất, và các định luật khoa học cũng đúng ở Nam Cực giống như đúng ở các điểm khác trên trái đất. Điều này gợi ý rằng sự khởi đầu của vũ trụ trong thời gian ảo có thể là một điểm bình thường của không thời gian, và nó cũng gợi ý rằng các định luật khoa học cũng đúng tại điểm khởi đầu của thời gian giống như tại các thời điểm khác của vũ trụ (nguồn gốc lượng tử và sự tiến hóa của vũ trụ sẽ được thảo luận trong chương sau). (Hình 2.20) THỜI GIAN ẢO Không thời gian ảo là một hình cầu, trong đó, hướng thời gian ảo được biểu diễn là khoảng cách từ cực nam. Nếu ta đi về hướng bắc thì các vĩ tuyến (những điểm nằm trên đó cách đều cực nam) sẽ lớn dần tương đương với vũ trụ giãn nở trong thời gian ảo. Vũ trụ sẽ đạt kích thước cực đại tại xích đạo và sau đó nếu ta tiếp tục tăng thời gian ảo thì vũ trụ sẽ co lại cho đến kích thước bằng không tại cực bắc. Mặc dù kích thước của vũ trụ bằng không tại các cực, nhưng những điểm này không phải là những điểm kỳ dị, cũng giống như bắc cực và nam cực của trái đất là những điểm hoàn toàn bình thường. Điều này gợi ý rằng, nguồn gốc của vũ trụ trong thời gian ảo có thể là những điểm bình thường trong không thời gian. (Hình 2.21) Thay cho vĩ độ, ta có thể tưởng tượng hướng thời gian ảo trong hình cầu không thời gian giống như các kinh độ. Vì tất cả các đường kinh tuyến đều gặp nhau tại cực bắc và cực nam nên thời gian sẽ dừng tại các cực, nếu ta muốn tăng thời gian ảo tại đó thì ta đứng yên tại chỗ, giống như ta đứng ở bắc cực của trái đất và đi về hướng tây thì ta vẫn sẽ ở nguyên chỗ đó. Ta có thể thấy một sự kiện khác có thể xảy ra khi coi thời gian ảo là độ của các đường kinh tuyến trên trái đất. Tất cả các đường kinh tuyến đều gặp nhau ở Bắc Cực và Nam Cực (hình 2.21). Do đó, tại các cực, thời gian sẽ dừng nếu ta coi thời gian ảo trôi tương tự như độ của các kinh tuyến tăng lên. Hình dung một người đứng ở một trong hai cực và đi về hướng đông hoặc hướng tây (theo hướng kinh tuyến tăng) thì anh ta sẽ tự quay quanh mình và đứng yên một chỗ. Điều này tương tự như cách mà thời gian thực dừng lại ở chân trời của hố đen. Chúng ta cần nhận thấy rằng sự dừng lại của thời gian thực và ảo (hoặc cả thời gian thực và ảo cùng dừng, hoặc không có thời gian nào dừng) có nghĩa là không thời gian có một nhiệt độ, giống như tôi đã phát hiện ra điều đó cho hố đen. Hố đen không chỉ có nhiệt độ mà nó còn hành xử như là nó có một đại lượng gọi là entropy. Entropy đo số các trạng thái nội (số các cách mà bên trong hố đen được định hình) mà hố đen có thể có. Một người quan sát bên ngoài không nhận thấy có sự khác biệt nào về số các trạng thái nội này của hố đen. Người quan sát này chỉ có thể quan sát được khối lượng, sự quay và điện tích của hố đen mà thôi. Entropy của hố đen này được cho bởi một công thức rất đơn giản mà tôi dã tìm ra vào năm 1974. Nó tỷ lệ với diện tích của chân trời của hố đen: có một chút thông tin về trạng thái nội của hố đen đối với mỗi đơn vị diện tích cơ bản của chân trời. Điều này cho thấy rằng có một mối quan hệ sâu sắc giữa hấp dẫn lượng tử và nhiệt động học - một môn khoa học về nhiệt (môn này có nghiên cứu về entropy). Nó cũng gợi ý rằng hấp dẫn lượng tử có thể cho biết một cái mà người ta gọi là phương pháp chụp ảnh ba chiều (holography). (hình 2.22) Công thức diện tích entropy - hay là số các trạng thái nội của một hố đen gợi ý rằng thông tin bị rơi vào trong một hố đen có thể được lưu trữ trong đó giống như một máy ghi âm và được phục hồi khi hố đen bay hơi. S = Akc3/4hG Công thức tính Entropy của hố đen A: diện tích chân trời sự kiện của hố đen h: hằng số Plank k: hằng số Boltzman G: hằng số hấp dẫn Newton c: vận tốc ánh sáng S: entropy NGUYÊN LÝ ẢNH ĐA CHIỀU Người ta thấy rằng diện tích bề mặt chân trời bao xung quanh hố đen là một phép đo entropy của hố đen. Điều này làm cho người ta giả thiết rằng entropy cực đại của bất kỳ vùng không gian đóng nào cũng không thể vượt quá một phần tư diện tích bề mặt giới hạn vùng không gian đó. Vì entropy không là gì khác hơn là phép đo thông tin toàn phần có trong hệ, do đó, thông tin liên quan đến tất cả mọi hiện tượng trong thế giới ba chiều có thể được lưu trữ trên biên hai chiều của nó giống như một bức ảnh đa chiều. Theo một ý nghĩa nhất định, thế giới có thể là hai chiều. (Hình 2.22) Về nguyên tắc, ảnh đa chiều là một hiện tượng giao thoa của các loại sóng. Ảnh được tạo ra khi ánh sáng từ một chùm laser đơn bị tách thành hai chùm (a) và (b). Chùm (b) đập vào vật thể (c) và phản xạ lên đĩa nhạy ánh sáng (d). Chùm (a) sẽ đi qua một thấu kính (e) và chạm vào ánh sáng phản xạ (b) tạo ra vân giao thoa trên đĩa. Khi một chùm laser được chiếu qua đĩa thì người ta thu được hình ảnh ba chiều đầy đủ của vật thể. Một nhà quan sát có thể nghiên cứu bức ảnh đa chiều này và có thể nhìn thấy những mặt mà những bức ảnh thường không thể cho thấy được. Bề mặt hai chiều của đĩa bên trái, không giống như một bức ảnh bình thường, có một tính chất đáng chú ý là bất kỳ một phần nhỏ nào trên bề mặt của nó đều chứa tất cả các thông tin cần thiết để tái cấu trúc toàn bộ hình ảnh. Vì một lý do nào đó mà thông tin về các trạng thái lượng tử trong một vùng không thời gian có thể được mã hóa ở biên của vùng không thời gian đó. Số chiều ở biên của không thời gian ít hơn hai chiều so với vùng bên trong. Điều này giống như việc chụp ảnh ba chiều trên một mặt phẳng hai chiều. Nếu hấp dẫn lượng tử kết hợp chẽ với nguyên lý chụp ảnh ba chiều thì điều này có thể cho phép ta theo dõi các sự kiện bên trong hố đen. Việc chúng ta có thể tiên đoán bức xạ thoát ra khỏi hố đen hay không là điều rất